98%
921
2 minutes
20
Bagasse has a potential as natural resource of nanosilica. Nanosilica biosynthetic production method is better than chemical or physical methods. The aim of this study is to determine the potential of Lactobacillus bulgaricus in nanosilica synthesis, the effect of the long incubation, and the effect of freeze drying to the nanosilica quality. The method consists of two steps. The first is performing biosynthesize using bagasse and Lactobacillus bulgaricus in dark place with temperature of 37 degress C for the period of 24 hours, 48 hours, and 72 hours. The second is analyzing particles and chemical of nanosilica characterization using Fourier Transformer Infrared Spectroscopy (FTIR), Particle Size Analyzer (PSA), X-ray Diffraction (XRD), some microscopes namely stereo, fluorescence, polarizing, Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX). The results show that nanosilica has spherical shaped, amorphous, and able to fluoresce when exposed by UV. The average size of particles are 104.6 nm in the 24 hours length incubated, 67.3 nm in the 48 hours length incubation, and 30.5 nm in the 72 hours length incubation. Samples using freeze drying have more complex and smaller structure than samples using air drying. The lengths of incubation influence the size and shape of nanosilica. Samples using freeze drying enable change the soil structure, and has beneficiary effect to improve soil fertility, as nanofertilizer. Whereas, the samples using air drying may use for glass or biofilm materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2016.12130 | DOI Listing |
J Sci Food Agric
September 2025
Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
Background: Apple pomace (AP), a byproduct of apple processing, is nutrient-rich, and its properties are influenced by both the quality of the apples and the juice extraction process. Drying technology can enhance its economic utilization. This study compared the effects of industrial drum drying (ID) and laboratory hot-air drying, heat pump drying and freeze drying (FD) on the physicochemical, functional and structural properties of from-concentrate AP (FC-AP) and not-from-concentrate AP (NFC-AP).
View Article and Find Full Text PDFFood Res Int
November 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China. Electronic a
While restructuring agricultural products enhances heat and mass transfer during freeze-drying, the underlying mechanisms remain poorly understood. This study employed a multiscale approach, combining freezing dynamics, sublimation drying kinetics, X-ray tomography, gas permeability assessments, thermodynamic parameters analysis, and mathematical modeling to systematically investigate the differences in transfer properties between natural and restructured peaches across the freezing and sublimation drying processes. Key results demonstrated that restructuring decreased the freezing time by 21.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Research Institute, Guangzhou 510555, China. Electronic address: zh
Breast milk is rich in bioactive proteins and oligosaccharides, including osteopontin (OPN) and 2'-fucosyllactose (2'-FL), which are believed to promote the growth of beneficial microbiota and regulate intestinal barrier function. In this study, fermentation substrates including DOPN (digested OPN fragment), 2'-FL and their combinations in varying proportions, were prepared through in vitro gastrointestinal digestion, dialysis and freeze-drying. Changes in gas production, organic acid levels, ammonia N concentration and bacterial population abundance were studied using an in vitro batch fermentation model, with feces inocula from healthy infants.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.
Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.
Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.
View Article and Find Full Text PDF