Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a useful tool for genome editing. In this study, using a microinjection-based CRISPR/Cas9 system, we efficiently generated mouse lines carrying mutations at the Irx3 and Irx5 loci, which are located in close proximity on a chromosome and are functionally redundant. During the generation of Irx3/Irx5 double mutant mice, a deletion of ~0.5 Mb between the Irx3 and Irx5 loci was unintentionally identified in 6 out of 27 living pups by PCR based genotyping analysis. This deletion was confirmed by DNA fluorescence in situ hybridization analysis of fibroblasts. These results indicate that the mutant mice with a deletion of at least 0.5 Mb in their genome can be generated by the CRISPR/Cas9 system through microinjection into fertilized eggs. Our findings expand the utility of the CRISPR/Cas9 system in production of disease model animals with large deletions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081742PMC
http://dx.doi.org/10.1262/jrd.2016-058DOI Listing

Publication Analysis

Top Keywords

crispr/cas9 system
16
mutant mice
12
deletion genome
8
irx3 irx5
8
irx5 loci
8
mice deletion
8
system
5
microinjection-based generation
4
generation mutant
4
mice double
4

Similar Publications

Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

Front Immunol

September 2025

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.

Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.

View Article and Find Full Text PDF

Cerebral Cavernous Malformations (CCMs) are vascular anomalies in the central nervous system that arise from both genetic and non-genetic factors, and can cause hemorrhage, seizures, and neurological deficits. Approximately 80% of CCMs are sporadic, while 20% are Familial (FCCMs), an autosomal dominant, monogenic disorder characterized by multiple lesions and severe clinical manifestations. Over the past three decades, linkage analyses have identified KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3 as major pathogenic genes in FCCMs.

View Article and Find Full Text PDF

Advances in Gene Therapy Clinical Trials for Hemophilia Care.

Curr Gene Ther

September 2025

Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.

Gene therapy has revolutionized the therapeutic landscape for hemophilia A and B, offering the prospect for persistent endogenous production of coagulation factors VIII and IX. Recent advances in adeno-associated virus (AAV)-mediated gene transfer, particularly the approvals of valoctocogene roxaparvovec (Roctavian) and etranacogene dezaparvovec (Hemgenix), mark significant milestones in hemophilia care. This mini-review synthesizes emerging clinical data from phase I-III trials published between 2022 and 2025, emphasizing efficacy, durability, and immunogenicity profiles of leading AAV-based therapies.

View Article and Find Full Text PDF

Residual disease in NPM1-mutated acute myeloid leukemia.

Clin Chim Acta

September 2025

Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical, Tehran, Iran. Electronic address:

Acute myeloid leukemia (AML) represents a genetically heterogeneous malignancy, with mutations in the nucleophosmin-1 (NPM1) gene identified as the most prevalent and clinically significant molecular biomarkers. These mutations play a crucial pivotal role in the realms of diagnosis, prognosis, and therapeutic decision-making. Although an ideal measurable residual disease (MRD) test has yet to be developed, there is increasing acknowledgment of the significance of advanced molecular methodologies for monitoring MRD in NPM1-mutated (NPM1) AML.

View Article and Find Full Text PDF

Ca/Calmodulin-Dependent Protein Kinase II (CaMKII)-Targeted Drug Discovery: Challenges and Strategies.

Ageing Res Rev

September 2025

Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Laboratory of Naturel Medicine for drug discovery, School of Pharmacy, China Medical University, Shenyang, 110122, China. Electronic address:

Calcium (Ca)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is an emerging drug target for age-related diseases. It is a multifunctional kinase with complex activation modes, numerous isoforms, broad tissue distribution, and a dual role in health and disease. In particular, its isoforms share a high degree of conservation within the catalytic and regulatory domains, with only minor differences confined to the linker region.

View Article and Find Full Text PDF