NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases.

Neuron

Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. Electronic address:

Published: July 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neural circuit mapping is generating datasets of tens of thousands of labeled neurons. New computational tools are needed to search and organize these data. We present NBLAST, a sensitive and rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and local geometry, decomposing neurons into short segments; matched segments are scored using a probabilistic scoring matrix defined by statistics of matches and non-matches. We validated NBLAST on a published dataset of 16,129 single Drosophila neurons. NBLAST can distinguish neuronal types down to the finest level (single identified neurons) without a priori information. Cluster analysis of extensively studied neuronal classes identified new types and unreported topographical features. Fully automated clustering organized the validation dataset into 1,052 clusters, many of which map onto previously described neuronal types. NBLAST supports additional query types, including searching neurons against transgene expression patterns. Finally, we show that NBLAST is effective with data from other invertebrates and zebrafish. VIDEO ABSTRACT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961245PMC
http://dx.doi.org/10.1016/j.neuron.2016.06.012DOI Listing

Publication Analysis

Top Keywords

neuronal types
8
nblast
7
neuronal
5
neurons
5
nblast rapid
4
rapid sensitive
4
sensitive comparison
4
comparison neuronal
4
neuronal structure
4
structure construction
4

Similar Publications

A transition of dynamic rheological responses of single cells: from fluid-like to solid-like.

Biophys J

September 2025

Laboratory for Multiscale Mechanics and Medical Science, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:

The mechanical properties of cells are crucial for elucidating various physiological and pathological processes. Cells are found to exhibit a universal power-law rheological behavior at low frequencies. While they behave in a different manner at high frequency regimes, which leaves the transition region largely unexplored.

View Article and Find Full Text PDF

Exploring Differentially Expressed Genes and Understanding the Underlying Mechanisms in Glioblastoma.

Biochem Genet

September 2025

Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Kocamustafapasa, 34098, Istanbul, Turkey.

Glioblastoma is the most aggressive and malignant tumor of the central nervous system. Current treatment options, including surgical excision, radiotherapy, and chemotherapy, have Limited efficacy, with a median survival rate of approximately 15 months. To develop novel therapeutics, it is crucial to understand the underlying molecular mechanisms driving glioblastoma.

View Article and Find Full Text PDF

Functional synapses between neurons and small cell lung cancer.

Nature

September 2025

Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Small cell lung cancer (SCLC) is a highly aggressive type of lung cancer, characterized by rapid proliferation, early metastatic spread, frequent early relapse and a high mortality rate. Recent evidence has suggested that innervation has an important role in the development and progression of several types of cancer. Cancer-to-neuron synapses have been reported in gliomas, but whether peripheral tumours can form such structures is unknown.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.

View Article and Find Full Text PDF