Anomalous diffusion and non-monotonic relaxation processes in Ge-Se liquids.

J Chem Phys

Laboratoire de Physique Théorique de la Matière Condensée, Paris Sorbonne Universités, UPMC, 4, Place Jussieu, 75252 Paris Cedex 05, France.

Published: June 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigate the dynamical properties of liquid GexSe100-x as a function of Ge content by first-principles molecular dynamic simulations for a certain number of temperatures in the liquid state. The focus is set on ten compositions (where x ≤ 33%) encompassing the reported flexible to rigid and rigid to stressed-rigid transitions. We examine diffusion coefficients, diffusion activation energies, glassy relaxation behavior, and viscosity of these liquids from Van Hove correlation and intermediate scattering functions. At fixed temperature, all properties/functions exhibit an anomalous behavior with Ge content in the region 18%-22%, and provide a direct and quantitative link to the network rigidity.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4953077DOI Listing

Publication Analysis

Top Keywords

anomalous diffusion
4
diffusion non-monotonic
4
non-monotonic relaxation
4
relaxation processes
4
processes ge-se
4
ge-se liquids
4
liquids investigate
4
investigate dynamical
4
dynamical properties
4
properties liquid
4

Similar Publications

Through molecular dynamics simulations of imidazolium-based ionic liquid-water mixtures, it was found that the trace water leads to an anomalous non-monotonic change in the diffusion coefficients of ionic liquid, characterized by an initial decrease followed by an increase. Hydrogen bond analysis revealed that this unusual trend is governed by the weighted hydrogen bond lifetime, reflecting the stability of the hydrogen-bond network, rather than simply the number or energy of hydrogen bonds.

View Article and Find Full Text PDF

Short-Time Relaxation and Anomalous Diffusion in Dynamic Covalent Networks.

ACS Macro Lett

September 2025

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.

Introducing dynamic covalent chemistries into polymer networks allows access to complex linear viscoelasticity, owing to the reversible nature of the dynamic bonds. While this macroscopic mechanical behavior is influenced by the dynamic exchange of these chemistries, connecting the microscopic dynamics to the bulk properties is hindered by the time scale conventional techniques can observe. Here, light scattering passive microrheology is applied to probe short-time dynamics of dynamic covalent networks that consist of telechelic benzalcyanoacetate (BCA) Michael acceptors and thiol-functionalized cross-linkers.

View Article and Find Full Text PDF

Background: Advanced diffusion models have been introduced to improve characterization of tissue microstructure in breast cancer assessment.

Purpose: This study aimed to evaluate the diagnostic utility of monoexponential apparent diffusion coefficient (ADC), time-dependent diffusion magnetic resonance imaging (td-dMRI), and the Continuous-Time Random-Walk (CTRW) diffusion model for differentiating breast lesions and predicting Ki-67 expression levels.

Methods: Fifty-three consecutive patients with suspected breast lesions undergoing preoperative MRI were enrolled in this prospective investigation.

View Article and Find Full Text PDF

Normal and anomalous diffusion processes are characterized by the time evolution of the mean square displacement of a diffusing molecule σ2(t). When σ2(t) is a power function of time, the process is described by a fractional subdiffusion, fractional superdiffusion or normal diffusion equation. However, for other forms of σ2(t), diffusion equations are often not defined.

View Article and Find Full Text PDF

Alzheimer's disease is the most widespread neurodegenerative disease in the world. Galantamine hydrobromide (GH) is one of the drugs used to treat mild to moderate dementia of the Alzheimer type. Due to the fact that the specificity of the disease requires maximally facilitated intake, orodispersible films present such an opportunity.

View Article and Find Full Text PDF