Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Normal and anomalous diffusion processes are characterized by the time evolution of the mean square displacement of a diffusing molecule σ2(t). When σ2(t) is a power function of time, the process is described by a fractional subdiffusion, fractional superdiffusion or normal diffusion equation. However, for other forms of σ2(t), diffusion equations are often not defined. We show that to describe diffusion characterized by σ2(t), the -subdiffusion equation with the fractional Caputo derivative with respect to a function can be used. Choosing an appropriate function , we obtain Green's function for this equation, which generates the assumed σ2(t). A method for solving such an equation, based on the Laplace transform with respect to the function , is also described.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385491 | PMC |
http://dx.doi.org/10.3390/e27080816 | DOI Listing |