98%
921
2 minutes
20
The unfolded protein response (UPR) is activated by various stresses during vegetative development in Arabidopsis, but is constitutively active in anthers of unstressed plants. To understand the role of the UPR during reproductive development, we analyzed a double mutant, ire1a ire1b. The double mutant knocks out the RNA-splicing arm of the UPR signaling pathway. It is fertile at room temperature but male sterile at modestly elevated temperature (ET). The conditional male sterility in the mutant is a sporophytic trait, and when the double mutant was grown at ET, defects appeared in the structure of the tapetum. As a result, the tapetum in the double mutant failed to properly deposit the pollen coat at ET, which made pollen grains clump and prevented their normal dispersal. IRE1 is a dual protein kinase/ribonuclease involved in the splicing of bZIP60 mRNA, and through complementation analysis of various mutant forms of IRE1b it was demonstrated that the ribonuclease activity of IRE1 was required for protecting male fertility from ET. It was also found that overexpression of SEC31A rescued the conditional male sterility in the double mutant. SEC31A is involved in trafficking from the endoplasmic reticulum to Golgi and a major target of the IRE1-mediated UPR signaling in stressed seedlings. Thus, IRE1, a major component of the UPR, plays an important role in protecting pollen development from ET.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.13239 | DOI Listing |
iScience
September 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
Deep learning has rapidly emerged as a promising toolkit for protein optimization, yet its success remains limited, particularly in the realm of activity. Moreover, most algorithms lack rigorous iterative evaluation, a crucial aspect of protein engineering exemplified by classical directed evolution. This study introduces DeepDE, a robust iterative deep learning-guided algorithm leveraging triple mutants as building blocks and a compact library of ∼1,000 mutants for training.
View Article and Find Full Text PDFSci China Life Sci
September 2025
MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.
View Article and Find Full Text PDFJ Biosci Bioeng
September 2025
Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
We have developed the methylotrophic yeast Ogataea minuta as a useful host for producing heterologous proteins. In this study, a double mutant that lacks the Prb1 protease and alcohol oxidase was generated and applied for heterologous protein production. Upon our optimization of the fermentation conditions, such as feeding of carbon and nitrogen sources and pH control, this mutant showed increased production of human serum albumin, resulting in a yield of approximately 7.
View Article and Find Full Text PDFJ Neurosci
September 2025
Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, United States.
Presenilin mutations are the most common cause of familial Alzheimer's disease (FAD), but the mechanisms by which they disrupt neuronal function remain unresolved, particularly in relation to γ-secretase activity. Using , we show that the presenilin ortholog SEL-12 supports synaptic transmission and axonal integrity through a pathway involving the ryanodine receptor RYR-1. Loss-of-function mutations in either or reduce neurotransmitter release and cause neuronal structural defects, with no additional impairment in double mutants, suggesting a shared pathway.
View Article and Find Full Text PDFJ Biomol Struct Dyn
September 2025
Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
Acetylesterase, produced by , plays a crucial role in deacetylating hemicellulose during pulp production. Thermostable variants of this enzyme, although rare, can significantly enhance industrial efficiency by retaining activity at high temperatures. This research aims to design a thermostable variant of acetylesterase from (EC 3.
View Article and Find Full Text PDF