Publications by authors named "Teagen D Quilichini"

Groundbreaking advances in gene editing technologies are transforming modern plant breeding by enabling precise genetic modifications that dramatically accelerate crop improvement. Haploid and diploid induction systems have emerged as particularly powerful tools in this landscape, offering both efficient gene editing capabilities and rapid production of homozygous lines while seamlessly integrating with the advanced genome-editing platforms such as CRISPR-Cas systems. This review synthesizes the current state of knowledge regarding the mechanisms, applications, and recent progress in haploid and diploid induction systems for gene editing.

View Article and Find Full Text PDF

Synchrotron radiation (SR) provides a wide spectrum of bright light that can be tailored to test myriad research questions. SR provides avenues to illuminate structure and composition across scales, making it ideally suited to the study of plants and seeds. Here, we present an array of methodologies and the data outputs available at a light source facility.

View Article and Find Full Text PDF

Lentil (Lens culinaris Medik.) is a nutritious legume with seeds rich in protein, minerals and an array of diverse specialized metabolites. The formation of a seed requires regulation and tight coordination of developmental programs to form the embryo, endosperm and seed coat compartments, which determines the structure and composition of mature seed and thus its end-use quality.

View Article and Find Full Text PDF

Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we analyzed the transcriptomes of developing embryos, from zygote to maturity, alongside endosperm in two stages of development, using reciprocal crosses between tetraploid and hexaploid wheats. Reciprocal crosses between species with varied levels of ploidy displayed broad impacts on gene expression, including shifts in alternative splicing events in select crosses, as illustrated by active splicing events, enhanced protein synthesis and chromatin remodeling.

View Article and Find Full Text PDF

Cannabis glandular trichomes produce and store an abundance of lipidic specialised metabolites (e.g. cannabinoids and terpenes) that are consumed by humans for medicinal and recreational purposes.

View Article and Find Full Text PDF

In plants, the actin cytoskeleton plays a critical role in defense against diverse pathogens. The formation of actin patches is essential for the intracellular transport of organelles and molecules toward pathogen penetration sites and the formation of papillae for an early cellular response to powdery mildew attack in . This response process is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR complex (W/SRC).

View Article and Find Full Text PDF

Seed development in angiosperms produces three genetically and developmentally distinct sub-compartments: the embryo, endosperm, and seed coat. The maternally derived seed coat protects the embryo and interacts closely with the external environment especially during germination and seedling establishment. Seed coat is a key contributor to seed composition and an important determinant of nutritional value for humans and livestock.

View Article and Find Full Text PDF

The economically valuable Brassica species include the six related members of U's Triangle. Despite the agronomic and economic importance of these Brassicas, the impacts of evolution and relatively recent domestication events on the genetic landscape of seed development have not been comprehensively examined in these species. Here we present a 3D transcriptome atlas for the six species of U's Triangle, producing a unique resource that captures gene expression data for the major subcompartments of the seed, from the unfertilized ovule to the mature embryo and seed coat.

View Article and Find Full Text PDF

The extreme chemical and physical recalcitrance of sporopollenin deems this biopolymer among the most resilient organic materials on Earth. As the primary material fortifying spore and pollen cell walls, sporopollenin is touted as a critical innovation in the progression of plant life to a terrestrial setting. Although crucial for its protective role in plant reproduction, the inert nature of sporopollenin has challenged efforts to determine its composition for decades.

View Article and Find Full Text PDF

The actin cytoskeleton regulates an array of diverse cellular activities that support the establishment of plant-microbe interactions and plays a critical role in the execution of plant immunity. However, molecular and cellular mechanisms regulating the assembly and rearrangement of actin filaments (AFs) at plant-pathogen interaction sites remain largely elusive. Here, using live-cell imaging, we show that one of the earliest cellular responses in Arabidopsis thaliana upon powdery mildew attack is the formation of patch-like AF structures beneath fungal invasion sites.

View Article and Find Full Text PDF

Among polyploid species with complex genomic architecture, variations in the regulation of alternative splicing (AS) provide opportunities for transcriptional and proteomic plasticity and the potential for generating trait diversities. However, the evolution of AS and its influence on grain development in diploid grass and valuable polyploid wheat crops are poorly understood. To address this knowledge gap, we developed a pipeline for the analysis of alternatively spliced transcript isoforms, which takes the high sequence similarity among polyploid wheat subgenomes into account.

View Article and Find Full Text PDF
Article Synopsis
  • Stem solidness in durum and bread wheat is a key trait that helps resist wheat stem sawfly and is controlled by a specific locus on chromosome 3B.
  • Research identified that variations in a particular gene, involved in DNA binding, influence stem solidness, with solid-stemmed cultivars having multiple copies while hollow-stemmed ones have only one.
  • The study suggests that manipulating the gene can potentially enhance stem development in wheat and related plants for agricultural benefits.
View Article and Find Full Text PDF

Different phosphoinositides enriched at the membranes of specific subcellular compartments within plant cells contribute to organelle identity, ensuring appropriate cellular trafficking and function. During the infection of plant cells, biotrophic pathogens such as powdery mildews enter plant cells and differentiate into haustoria. Each haustorium is enveloped by an extrahaustorial membrane (EHM) derived from the host plasma membrane.

View Article and Find Full Text PDF

Modern wheat production comes from two polyploid species, and (var ), which putatively arose from diploid ancestors , , and How gene expression during embryogenesis and grain development in wheats has been shaped by the differing contributions of diploid genomes through hybridization, polyploidization, and breeding selection is not well understood. This study describes the global landscape of gene activities during wheat embryogenesis and grain development. Using comprehensive transcriptomic analyses of two wheat cultivars and three diploid grasses, we investigated gene expression at seven stages of embryo development, two endosperm stages, and one pericarp stage.

View Article and Find Full Text PDF

The cannabis leaf is iconic, but it is the flowers of cannabis that are consumed for the psychoactive and medicinal effects of their specialized metabolites. Cannabinoid metabolites, together with terpenes, are produced in glandular trichomes. Superficially, stalked and sessile trichomes in cannabis only differ in size and whether they have a stalk.

View Article and Find Full Text PDF

The ability to create desirable gene variants through targeted changes offers tremendous opportunities for the advancement of basic and applied plant research. Gene editing technologies have opened new avenues to perform such precise gene modifications in diverse biological systems. These technologies use sequence-specific nucleases, such as homing endonucleases, zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (CRISPR/Cas) complexes to enable targeted genetic manipulations.

View Article and Find Full Text PDF

From scientific advances in medical research to the plethora of anti-aging products available, our obsession with slowing the aging process and increasing life span is indisputable. A large research effort has been levied towards this perpetual search for the fountain of youth, yet the molecular mechanisms governing an organism's life span and the causes of aging are only beginning to emerge in animals and remain largely unanswered in plants. As one central pathway in eukaryotes controlling cell growth, development, and metabolism, the target of rapamycin (TOR) plays an evolutionarily conserved role in aging and the determination of life span.

View Article and Find Full Text PDF

Embryogenesis represents a critical phase in the life cycle of flowering plants. Here, we characterize transcriptome landscapes associated with key stages of embryogenesis by combining an optimized method for the isolation of developing Arabidopsis embryos with high-throughput RNA-seq. The resulting RNA-seq datasets identify distinct overlapping patterns of gene expression, as well as temporal shifts in gene activity across embryogenesis.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is activated by various stresses during vegetative development in Arabidopsis, but is constitutively active in anthers of unstressed plants. To understand the role of the UPR during reproductive development, we analyzed a double mutant, ire1a ire1b. The double mutant knocks out the RNA-splicing arm of the UPR signaling pathway.

View Article and Find Full Text PDF

Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult.

View Article and Find Full Text PDF

The formation of the durable outer pollen wall, largely composed of sporopollenin, is essential for the protection of the male gametophyte and plant reproduction. Despite its apparent strict conservation amongst land plants, the composition of sporopollenin and the biosynthetic pathway(s) yielding this recalcitrant biopolymer remain elusive. Recent molecular genetic studies in Arabidopsis thaliana (Arabidopsis) and rice have, however, identified key genes involved in sporopollenin formation, allowing a better understanding of the biochemistry and cell biology underlying sporopollenin biosynthesis and pollen wall development.

View Article and Find Full Text PDF

Background And Aims: The Arabidopsis thaliana pollen cell wall is a complex structure consisting of an outer sporopollenin framework and lipid-rich coat, as well as an inner cellulosic wall. Although mutant analysis has been a useful tool to study pollen cell walls, the ultrastructure of the arabidopsis anther has proved to be challenging to preserve for electron microscopy.

Methods: In this work, high-pressure freezing/freeze substitution and transmission electron microscopy were used to examine the sequence of developmental events in the anther that lead to sporopollenin deposition to form the exine and the dramatic differentiation and death of the tapetum, which produces the pollen coat.

View Article and Find Full Text PDF

In flowering plants, anther and pollen development is critical for male reproductive success. The anther cuticle and pollen exine play an essential role, and in many cereals, such as rice, orbicules/ubisch bodies are also thought to be important for pollen development. The formation of the anther cuticle, exine and orbicules is associated with the biosynthesis and transport of wax, cutin and sporopollenin components.

View Article and Find Full Text PDF

The highly resistant biopolymer, sporopollenin, gives the outer wall (exine) of spores and pollen grains their unparalleled strength, shielding these structures from terrestrial stresses. Despite a limited understanding of the composition of sporopollenin, it appears that the synthesis of sporopollenin occurs in the tapetum and requires the transport of one or more sporopollenin constituents to the surface of developing microspores. Here, we describe ABCG26, a member of the ATP-binding cassette (ABC) transporter superfamily, which is required for pollen exine formation in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF