98%
921
2 minutes
20
Different phosphoinositides enriched at the membranes of specific subcellular compartments within plant cells contribute to organelle identity, ensuring appropriate cellular trafficking and function. During the infection of plant cells, biotrophic pathogens such as powdery mildews enter plant cells and differentiate into haustoria. Each haustorium is enveloped by an extrahaustorial membrane (EHM) derived from the host plasma membrane. Little is known about the EHM biogenesis and identity. Here, we demonstrate that among the two plasma membrane phosphoinositides in Arabidopsis (), PI(4,5)P is dynamically up-regulated at powdery mildew infection sites and recruited to the EHM, whereas PI4P is absent in the EHM. Lateral transport of PI(4,5)P into the EHM occurs through a brefeldin A-insensitive but actin-dependent trafficking pathway. Furthermore, the lower levels of PI(4,5)P in mutants inhibit fungal pathogen development and cause disease resistance, independent of cell death-associated defenses and involving impaired host susceptibility. Our results reveal that plant biotrophic and hemibiotrophic pathogens modulate the subcellular distribution of host phosphoinositides and recruit PI(4,5)P as a susceptibility factor for plant disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203932 | PMC |
http://dx.doi.org/10.1105/tpc.19.00970 | DOI Listing |
J Nat Prod
September 2025
College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea.
LC-HRMS/MS-based molecular-network-guided chemical investigation of led to the isolation of seven undescribed tetrasaccharide-type resin glycosides (-). Their structures were elucidated using 1D and 2D NMR and HRESIMS analysis. Isolated resin glycosides were comprised of d-glucose, d-fucose, d-quinovose, and l-rhamnose, and these monosaccharides were partially acylated with acetyl, isobutyryl, -hexanoyl, and niloyl organic acids.
View Article and Find Full Text PDFPlant J
September 2025
Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Science, RMIT University, P.O. Box 2476, Melbourne 3001, Australia.
Lutein is a plant pigment beneficial for eye health and for preventing retinal-related diseases. However, lutein is unstable, with low oral bioavailability. In this study, lutein fromwas loaded into cubosome lipid nanocarriers, both neutral (lutein-MO) and cationic (lutein-MO-DOTAP); the release, stability, and retinal penetration of the drug were improved.
View Article and Find Full Text PDFJ Toxicol Environ Health A
September 2025
Department of Ecology and Conservation, Natural Sciences Institute, Federal University of Lavras, Lavras, MG, Brazil.
Flumioxazin-based herbicides are frequently used in agriculture to control broadleaf weeds attributed to their high efficacy, rapid action, and residual soil activity, making these compounds a preferred choice over other herbicides in pre-emergence weed control. Due to their beneficial properties, use of these herbicides has significantly increased in recent years, raising concerns regarding potential environmental risks. This study aimed to examine the effects of a commercial flumioxazin-based formulation on different plant models.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDF