Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Family Smoking Prevention and Tobacco Control Act of 2009 established the Food and Drug Administration Center for Tobacco Products (FDA-CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 8-10 December 2014, IIVS organised a workshop conference, entitled Assessment of In Vitro COPD Models for Tobacco Regulatory Science, to bring together stakeholders representing regulatory agencies, academia, industry and animal protection, to address the research priorities articulated by the FDA-CTP. Specific topics were covered to assess the status of current in vitro technologies as they are applied to understanding the adverse pulmonary events resulting from tobacco product exposure, and in particular, the progression of chronic obstructive pulmonary disease (COPD). The four topics covered were: a) Inflammation and Oxidative Stress; b) Ciliary Dysfunction and Ion Transport; c) Goblet Cell Hyperplasia and Mucus Production; and d) Parenchymal/Bronchial Tissue Destruction and Remodelling. The 2.5 day workshop included 18 expert speakers, plus poster sessions, networking and breakout sessions, which identified key findings and provided recommendations to advance the in vitro technologies and assays used to evaluate tobacco-induced disease etiologies. The workshop summary was reported at the 2015 Society of Toxicology Annual Meeting, and the recommendations led to an IIVS-organised technical workshop in June 2015, entitled Goblet Cell Hyperplasia, Mucus Production, and Ciliary Beating Assays, to assess these assays and to conduct a proof-of-principle multi-laboratory exercise to determine their suitability for standardisation. Here, we report on the proceedings, recommendations and outcomes of the December 2014 workshop, including paths forward to continue the development of non-animal methods to evaluate tissue responses that model the disease processes that may lead to COPD, a major cause of mortality worldwide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450817PMC
http://dx.doi.org/10.1177/026119291604400206DOI Listing

Publication Analysis

Top Keywords

assessment vitro
8
vitro copd
8
copd models
8
models tobacco
8
tobacco regulatory
8
regulatory science
8
paths forward
8
tobacco products
8
december 2014
8
topics covered
8

Similar Publications

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF

Hippophae salicifolia, commonly known as sea buckthorn, is native to the Indian Himalayan region. This study is the first to comprehensively assess the phytochemical profile and biological activities of H. salicifolia leaves extracted through maceration, infusion, and percolation (Soxhlet apparatus) methods.

View Article and Find Full Text PDF

Design and Synthesis of Structurally Novel Acridospiroisoxazole Derivatives and Their Antifungal Activity Study.

Chem Biodivers

September 2025

Key Lab of Natural Product Chemistry and Application at Universities of Education, Department of Xinjiang Uygur Autonomous Region, School of Chemistry and Chemical Engineering, Yili Normal University, Xinjiang, China.

The persistent threat posed by phytopathogenic fungi to agricultural systems underscores the critical need for novel fungicides. Here, we synthesized and characterized a series of novel acridospiroisoxazole derivatives (H1-H36) using H/C NMR and mass spectrometry. The absolute configuration of compound H23 was confirmed using single-crystal x-ray diffraction analysis.

View Article and Find Full Text PDF

Assessing the phagocytosis of microbes by macrophages is an important component of studies of novel immunotherapeutics, antimicrobial drugs, immune effectors, or any immunology related research. Here we define two protocols for measuring in vitro phagocytosis by RAW 246.7 cells - a photographic phagocytosis assay that allows optical measurement of bacterial cells inside of the RAW 246.

View Article and Find Full Text PDF

Biofilms are a primary form of device-associated infections and typically exhibit high tolerance to antimicrobial agents. In biofilms formed by multiple microbial species, microorganisms may show even greater tolerance, complicating treatment. There is evidence that meropenem (MEPM) tolerance in is increased in dual-species biofilms with , and effective treatments have not been established.

View Article and Find Full Text PDF