Doublecortin Is Excluded from Growing Microtubule Ends and Recognizes the GDP-Microtubule Lattice.

Curr Biol

Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA. Electronic address:

Published: June 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many microtubule (MT) functions are mediated by a diverse class of proteins (+TIPs) at growing MT plus ends that control intracellular MT interactions and dynamics and depend on end-binding proteins (EBs) [1]. Cryoelectron microscopy has recently identified the EB binding site as the interface of four tubulin dimers that undergoes a conformational change in response to β-tubulin GTP hydrolysis [2, 3]. Doublecortin (DCX), a MT-associated protein (MAP) required for neuronal migration during cortical development [4, 5], binds to the same site as EBs [6], and recent in vitro studies proposed DCX localization to growing MT ends independent of EBs [7]. Because this conflicts with observations in neurons [8, 9] and the molecular function of DCX is not well understood, we revisited intracellular DCX dynamics at low expression levels. Here, we report that DCX is not a +TIP in cells but, on the contrary, is excluded from the EB1 domain. In addition, we find that DCX-MT interactions are highly sensitive to MT geometry. In cells, DCX binding was greatly reduced at MT segments with high local curvature. Remarkably, this geometry-dependent binding to MTs was completely reversed in the presence of taxanes, which reconciles incompatible observations in cells [9] and in vitro [10]. We propose a model explaining DCX specificity for different MT geometries based on structural changes induced by GTP hydrolysis that decreases the spacing between adjacent tubulin dimers [11]. Our data are consistent with a unique mode of MT interaction in which DCX specifically recognizes this compacted GDP-like MT lattice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023073PMC
http://dx.doi.org/10.1016/j.cub.2016.04.020DOI Listing

Publication Analysis

Top Keywords

growing ends
8
tubulin dimers
8
gtp hydrolysis
8
dcx
8
doublecortin excluded
4
excluded growing
4
growing microtubule
4
microtubule ends
4
ends recognizes
4
recognizes gdp-microtubule
4

Similar Publications

Differential interference with actin-binding protein function by acute cytochalasin B.

Curr Biol

September 2025

Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; Braunschweig Integrated Centre

Dynamic actin filament remodeling is crucial for a plethora of fundamental cell biological processes, ranging from cell division and migration to cell communication, intracellular trafficking, or tissue development. Cytochalasin B (CB) and D (CD) are fungal secondary metabolites frequently used for interference with such processes. Although they are generally assumed to block actin filament polymerization at their rapidly growing barbed ends and compete with regulators at these sites, precise molecular understanding of their effects in dynamic actin structures requires further study.

View Article and Find Full Text PDF

Opening and closing of a cryptic pocket in VP35 toggles it between two different RNA-binding modes.

Elife

September 2025

Department of Biochemistry & Biophysics and Bioengineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.

Cryptic pockets are of growing interest as potential drug targets, particularly to control protein-nucleic acid interactions that often occur via flat surfaces. However, it remains unclear whether cryptic pockets contribute to protein function or if they are merely happenstantial features that can easily be evolved away to achieve drug resistance. Here, we explore whether a cryptic pocket in the Interferon Inhibitory Domain (IID) of viral protein 35 (VP35) of Zaire ebolavirus aids its ability to bind double-stranded RNA (dsRNA).

View Article and Find Full Text PDF

BrATG5 encoding autophagy protein was fine-mapped through MutMap and KASP analysis, and its function in regulating leaf senescence was verified using virus-induced gene silencing and functional complementation assays in Chinese cabbage. Leaf senescence is the final stage of leaf development, and is accompanied by the breakdown of organelle and catabolism of chlorophyll and macromolecules. The generated nutrients are supplied to developing seeds or other growing organs.

View Article and Find Full Text PDF

The current state of political polarization in the United States encompasses a growing divide between partisans and a shift toward more extreme ideologies. Although rising ideological extremism poses societal challenges, the mechanisms supporting extreme views remain uncharacterized. Leveraging a combination of neurophysiological methods, we show that regardless of which side of the political aisle an individual is on, those with more extreme views show heightened neural activity to politically charged content in brain regions implicated in affective processing-including the amygdala, periaqueductal gray, and posterior superior temporal sulcus.

View Article and Find Full Text PDF

Microplastics have joined a growing list of environmental pollutants that affect the ecosystem in general, as well as the health of land and sea fauna and humans. Textiles are a major source of microplastics, led by the release from polyester fibers that are two-thirds of global textile production. Polyester is used both in filament and staple fiber form, while staple fibers are more prone to shedding due to their shorter size, and therefore a greater number of fibers ends.

View Article and Find Full Text PDF