Publications by authors named "Susana A Ribeiro"

High-content screening (HCS) provides an excellent tool to understand the mechanism of action of drugs on disease-relevant model systems. Careful selection of fluorescent labels (FLs) is crucial for successful HCS assay development. HCS assays typically comprise (a) FLs containing biological information of interest, and (b) additional structural FLs enabling instance segmentation for downstream analysis.

View Article and Find Full Text PDF

CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting.

View Article and Find Full Text PDF
Article Synopsis
  • Microtubules (MTs) interact with a range of proteins (+TIPs) at their growing ends, and the EB proteins are crucial for this interaction, especially during GTP hydrolysis.
  • Recent studies, including cryoelectron microscopy, have revealed details about how EB proteins bind to MTs, while Doublecortin (DCX), a protein vital for brain development, binds to the same site but may localize differently based on the conditions.
  • This research indicates that DCX is not a typical +TIP, as it is excluded from certain MT domains and its binding is influenced by the MT's curvature, with taxanes altering this interaction—suggesting a unique mechanism for how DCX interacts with the MT structure
View Article and Find Full Text PDF

The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated.

View Article and Find Full Text PDF

Large multinucleated Reed-Sternberg cells (RS) and large mononucleated Hodgkin cells (H) are traditionally considered to be the neoplastic population in classical Hodgkin lymphoma, (cHL) and postulated to promote the disease. However, the contribution of these larger cells to the progression of cHL remains debatable. We used established cHL cell lines and cHL cellular fractions composed of small mononucleated cells only or enriched in large RS/H cells to investigate RS/H cell origin and to characterize the cells which they derive from.

View Article and Find Full Text PDF

Focal adhesions are dynamic structures that interact with the extracellular matrix on the cell exterior and actin filaments on the cell interior, enabling cells to adhere and crawl along surfaces. We describe a system for inducing the formation of focal adhesions in normally non-ECM-adherent, nonmotile Drosophila S2 cells. These focal adhesions contain the expected molecular markers such as talin, vinculin, and p130Cas, and they require talin for their formation.

View Article and Find Full Text PDF

In order to understand the three-dimensional structure of the functional kinetochore in vertebrates, we require a complete list and stoichiometry for the protein components of the kinetochore, which can be provided by genetic and proteomic experiments. We also need to know how the chromatin-containing CENP-A, which makes up the structural foundation for the kinetochore, is folded, and how much of that DNA is involved in assembling the kinetochore. In this MS, we demonstrate that functioning metaphase kinetochores in chicken DT40 cells contain roughly 50 kb of DNA, an amount that corresponds extremely closely to the length of chromosomal DNA associated with CENP-A in ChIP-seq experiments.

View Article and Find Full Text PDF

A longstanding question in centromere biology has been the organization of CENP-A-containing chromatin and its implications for kinetochore assembly. Here, we have combined genetic manipulations with deconvolution and super-resolution fluorescence microscopy for a detailed structural analysis of chicken kinetochores. Using fluorescence microscopy with subdiffraction spatial resolution and single molecule sensitivity to map protein localization in kinetochore chromatin unfolded by exposure to a low salt buffer, we observed robust amounts of H3K9me3, but only low levels of H3K4me2, between CENP-A subdomains in unfolded interphase prekinetochores.

View Article and Find Full Text PDF

When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores.

View Article and Find Full Text PDF

We describe a method for the isolation of conditional knockouts of essential multiply spliced genes in which the entire body of the gene downstream of the ATG start codon is left untouched but can be switched off rapidly and completely by adding tetracycline to the culture medium. The approach centers on a "promoter-hijack" strategy in which the gene's promoter is replaced with a minimal promoter responsive to the tetracycline-repressible transactivator (tTA). Elsewhere in the genome, a cloned fragment of the gene's promoter is used to drive expression of a tTA.

View Article and Find Full Text PDF

The reversible condensation of chromosomes during cell division remains a classic problem in cell biology. Condensation requires the condensin complex in certain experimental systems, but not in many others. Anaphase chromosome segregation almost always fails in condensin-depleted cells, leading to the formation of prominent chromatin bridges and cytokinesis failure.

View Article and Find Full Text PDF

Gliosarcomas are rare and poorly characterized malignant brain tumors that exhibit a biphasic tissue pattern with areas of gliomatous and sarcomatous differentiation. These tumors are histological variants of glioblastoma, displaying a similar genetic profile and dismal prognosis. Up-regulation of PDGFR subfamily of tyrosine kinase members, PDGFR-alpha and c-Kit, and their intracellular effectors RAS/RAF/MAPK has a crucial role in the cancer development.

View Article and Find Full Text PDF