Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110).

J Chem Theory Comput

Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, E-08193 Barcelona, Spain.

Published: June 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optimizing the photovoltaic efficiency of dye-sensitized solar cells (DSSC) based on staggered gap heterojunctions requires a detailed understanding of sub-band gap transitions in the visible from the dye directly to the substrate's conduction band (CB) (type-II DSSCs). Here, we calculate the optical absorption spectra and spatial distribution of bright excitons in the visible region for a prototypical DSSC, catechol on rutile TiO2(110), as a function of coverage and deprotonation of the OH anchoring groups. This is accomplished by solving the Bethe-Salpeter equation (BSE) based on hybrid range-separated exchange and correlation functional (HSE06) density functional theory (DFT) calculations. Such a treatment is necessary to accurately describe the interfacial level alignment and the weakly bound charge transfer transitions that are the dominant absorption mechanism in type-II DSSCs. Our HSE06 BSE spectra agree semiquantitatively with spectra measured for catechol on anatase TiO2 nanoparticles. Our results suggest deprotonation of catechol's OH anchoring groups, while being nearly isoenergetic at high coverages, shifts the onset of the absorption spectra to lower energies, with a concomitant increase in photovoltaic efficiency. Further, the most relevant bright excitons in the visible region are rather intense charge transfer transitions with the electron and hole spatially separated in both the [110] and [001] directions. Such detailed information on the absorption spectra and excitons is only accessible via periodic models of the combined dye-substrate interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.6b00217DOI Listing

Publication Analysis

Top Keywords

absorption spectra
16
optical absorption
8
spectra excitons
8
photovoltaic efficiency
8
type-ii dsscs
8
bright excitons
8
excitons visible
8
visible region
8
anchoring groups
8
charge transfer
8

Similar Publications

The incorporation of transitional elements into silicon or germanium-based semiconductor clusters not only notably improves their structural stability but also endows them with unprecedented multifunctionalities. In this work, the structural, vibrational, and electronic properties for copper-doped silicon and germanium cation clusters Cu (X = Si or Ge, = 6-16) are systematically investigated. The ground-state structures are identified using the PBE0 and mPW2PLYP method combined with a global search technique.

View Article and Find Full Text PDF

Trimetallic Au-Ag-Cu Joint Doped Hydroxyapatite: Synergistic Photo-Fenton-Like Catalytic Performance Enhancement.

ACS Omega

September 2025

College of Materials and Chemical Engineering, Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, Anhui 237012, P. R. China.

Photo-Fenton oxidation, as a promising wastewater treatment technology, suffers from double barriers: the sluggish Fenton catalytic rate of transition metal ions and inefficient visible light absorption, both of which severely constrain the performance enhancement of catalytic systems. Therefore, accelerating electron transfer processes and broadening optical absorption spectra have become critical scientific challenges for practical implementation. Herein, a composite catalyst system based on Au-Ag-Cu trimetallic species codoped on hydroxyapatite (HAp) was reported via an ion/ligand impregnation method.

View Article and Find Full Text PDF

Grafting of Resveratrol-Chitosan Nanoparticles as a Promising Radiosensitizer and Protector in DMBA-Induced Breast Cancer in Mice.

Curr Cancer Drug Targets

September 2025

Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt.

Introduction: Breast cancer is the most common malignancy among women and the second leading cause of cancer-related deaths worldwide. Resveratrol, a polyphenolic stilbene derivative found in grapes, red wine, and other plants, possesses anti-cancer properties. Various studies have reported the potential of different nanomaterials to act as radiosensitizers against tumor cells.

View Article and Find Full Text PDF

A CuBiO/TiO p-n Heterojunction for Enhancing the Barrier Protection of a Nickel-Based Layer on the Magnesium Alloy.

J Phys Chem Lett

September 2025

Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, PR China.

Herein, CuBiO microspheres were first deposited on TiO nanotube arrays to develop a p-n CuBiO/TiO heterojunction by a facile hydrothermal protocol. The variations in the photoinduced open-circuit potential, photocurrent, and electrochemical parameters of the nickel-plated magnesium alloy (Mg/Ni) demonstrated the remarkably strengthened photoelectrochemical efficiency and photocathodic protection (PCP) capability caused by the CuBiO modification. This enhancement is attributed to establishing a built-in electric field and intensified light absorption in a broadened wavelength spectrum, confirmed by the valence band XPS and ultraviolet-visible spectra.

View Article and Find Full Text PDF

The effect of electron irradiation ( = 1.8 MeV) on the optical properties of polyethylene glycol 400-multiwalled carbon nanotube (PEG-400/MWCNT) nanocomposite films was studied within an absorbed dose range of 0 to 0.4 MGy.

View Article and Find Full Text PDF