98%
921
2 minutes
20
Sorting and export of transmembrane cargoes and lysosomal hydrolases at the trans-Golgi network (TGN) are well understood. However, elucidation of the mechanism by which secretory cargoes are segregated for their release into the extracellular space remains a challenge. We have previously demonstrated that, in a reaction that requires Ca(2+), the soluble TGN-resident protein Cab45 is necessary for the sorting of secretory cargoes at the TGN. Here, we report that Cab45 reversibly assembles into oligomers in the presence of Ca(2+) These Cab45 oligomers specifically bind secretory proteins, such as COMP and LyzC, in a Ca(2+)-dependent manner in vitro. In intact cells, mutation of the Ca(2+)-binding sites in Cab45 impairs oligomerization, as well as COMP and LyzC sorting. Superresolution microscopy revealed that Cab45 colocalizes with secretory proteins and the TGN Ca(2+) pump (SPCA1) in specific TGN microdomains. These findings reveal that Ca(2+)-dependent changes in Cab45 mediate sorting of specific cargo molecules at the TGN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862333 | PMC |
http://dx.doi.org/10.1083/jcb.201601089 | DOI Listing |
Nat Immunol
September 2025
Department of Microbiology, University of Chicago, Chicago, IL, USA.
Cholesterol-dependent cytolysins (CDCs) constitute the largest group of pore-forming toxins and serve as critical virulence factors for diverse pathogenic bacteria. Several CDCs are known to activate the NLRP3 inflammasome, although the mechanisms are unclear. Here we discovered that multiple CDCs, which we referred to as type A CDCs, were internalized and translocated to the trans-Golgi network (TGN) to remodel it into a platform for NLRP3 activation through a unique peeling membrane mechanism.
View Article and Find Full Text PDFEMBO Rep
September 2025
Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore"-Second Unit (IEOMI-SU), National Research Council of Italy (CNR), Via P. Castellino 111, Napoli, Italy.
The classical models of intra-Golgi transport envision a movement of cargoes from cis- to trans-Golgi, followed by their sorting at the trans-Golgi network (TGN). During this vectorial transport, the cargoes are processed by sequentially acting glycosylation enzymes. A number of studies challenged the vectorial transport model and proposed alternative transport routes bypassing either directional transport or the TGN.
View Article and Find Full Text PDFJ Lipid Res
September 2025
Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Department of Medicine and the Interdepartmental Division of Critical Care Med
Atherosclerosis begins with the subendothelial retention of low-density lipoproteins (LDL) from the circulation. While LDL transcytosis across the endothelium is mediated by SR-BI and ALK1 and is usually independent of LDLR, the intracellular mechanisms and route of LDL transcytosis remain unclear. Using total internal reflection fluorescence microscopy in LDLR-depleted human coronary artery endothelial cells (HCAECs), we found that LDL transcytosis can proceed both directly as well as indirectly from an intracellular compartment.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
The Helen B Taussig Heart Center, Cardiovascular Innovation Laboratory, Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
UDP-Gal-β-1,4 galactosyltransferase-V (GalT-V) is a member of a large family of galactosyltransferases whose function is to transfer galactose from the nucleotide sugar UDP-galactose to a glycosphingolipid glucosylceramide, to generate lactosylceramide (LacCer). It also causes the N and O glycosylation of proteins in the Trans Golgi area. LacCer is a bioactive lipid second messenger that activates an "oxidative stress pathway", leading to critical phenotypes, e.
View Article and Find Full Text PDF