Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Detection of tumor-related proteins with high specificity and sensitivity is important for early diagnosis and prognosis of cancers. While protein sensors based on antibodies are not easy to keep for a long time, aptamers (single-stranded DNA) are found to be a good alternative for recognizing tumor-related protein specifically. This study investigates the feasibility of employing aptamers to recognize the platelet-derived growth factor (PDGF) specifically and subsequently triggering rolling circle amplification (RCA) of DNAs on extended-gate field-effect transistors (EGFETs) to enhance the sensitivity. The EGFETs are fabricated by the standard CMOS technology and integrated with readout circuits monolithically. The monolithic integration not only avoids the wiring complexity for a large sensor array but also enhances the sensor reliability and facilitates massive production for commercialization. With the RCA primers immobilized on the sensory surface, the protein signal is amplified as the elongation of DNA, allowing the EGFET to achieve a sensitivity of 8.8 pM, more than three orders better than that achieved by conventional EGFETs. Moreover, the responses of EGFETs are able to indicate quantitatively the reaction rates of RCA, facilitating the estimation on the protein concentration. Our experimental results demonstrate that immobilized RCA on EGFETs is a useful, label-free method for early diagnosis of diseases related to low-concentrated tumor makers (e.g., PDGF) for serum sample, as well as for monitoring the synthesis of various DNA nanostructures in real time. Graphical Abstract The tumor-related protein, PDGF, is detected by immobilizing rolling circle amplification on an EGFET with integrated readout circuit.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-016-9568-yDOI Listing

Publication Analysis

Top Keywords

rolling circle
12
circle amplification
12
integrated readout
12
extended-gate field-effect
8
field-effect transistors
8
readout circuits
8
platelet-derived growth
8
growth factor
8
early diagnosis
8
tumor-related protein
8

Similar Publications

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

Rolling circle amplification for next-generation molecular diagnostics, genome analysis, and spatial transcriptome profiling.

Nanoscale

September 2025

Department of Bioengineering & Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.

Rolling circle amplification (RCA) has emerged as a highly versatile and robust isothermal amplification technology, offering exceptional sensitivity, specificity, and scalability for next-generation molecular diagnostics and multi-omics research. Its ability to generate long, repetitive DNA sequences with high fidelity has made it a pivotal tool in disease diagnostics, genomic analysis, and spatial transcriptome profiling. Recent advancements have expanded RCA into various formats, including solution-phase, solid-phase, hydrogel-based, and digital RCA, enhancing its analytical performance and adaptability across diverse biological applications.

View Article and Find Full Text PDF

Replication competition drives the selective mtDNA inheritance in Drosophila ovary.

Cell Rep

September 2025

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Purifying selection that limits the transmission of harmful mitochondrial DNA (mtDNA) mutations has been observed in both human and animal models. Yet, the precise mechanism underlying this process remains undefined. Here, we present a highly specific and efficient in situ imaging method capable of visualizing mtDNA variants that differ by only a few nucleotides at single-molecule resolution in Drosophila ovaries.

View Article and Find Full Text PDF

Circular Rep-encoding single-stranded DNA (CRESS-DNA) virus Rep proteins are multidomain enzymes that mediate viral DNA rolling-circle replication. Reps nick viral DNA to expose a 3' end for polymerase extension, provide an NTP-dependent helicase activity for DNA unwinding, and join nicked ends to form circular viral genomes. Here, we present the first structures of a Rep protein from the family, a newly discovered family of human-associated CRESS-DNA viruses that replicates within the oral protozoan .

View Article and Find Full Text PDF

Acute respiratory tract diseases (ARDs) are predominantly caused by viral infections, with one of their hallmark characteristics being multiple viral co-infections. Such multiple viral infections not only complicate therapeutic interventions but also lead to an increase in mortality rates. Most traditional bioassays, however, are limited to identifying a single type of virus, leading to missed diagnoses in samples with multiple respiratory pathogens.

View Article and Find Full Text PDF