98%
921
2 minutes
20
Fish scales are morphologically diverse among species, within species, and on individuals. Scales of bony fishes are often categorized into three main types: cycloid scales have smooth edges; spinoid scales have spines protruding from the body of the scale; ctenoid scales have interdigitating spines protruding from the posterior margin of the scale. For this study, we used two- and three-dimensional (2D and 3D) visualization techniques to investigate scale morphology of bluegill sunfish (Lepomis macrochirus) on different regions of the body. Micro-CT scanning was used to visualize individual scales taken from different regions, and a new technique called GelSight was used to rapidly measure the 3D surface structure and elevation profiles of in situ scale patches from different regions. We used these data to compare the surface morphology of scales from different regions, using morphological measurements and surface metrology metrics to develop a set of shape variables. We performed a discriminant function analysis to show that bluegill scales differ across the body - scales are cycloid on the opercle but ctenoid on the rest of the body, and the proportion of ctenii coverage increases ventrally on the fish. Scales on the opercle and just below the anterior spinous dorsal fin were smaller in height, length, and thickness than scales elsewhere on the body. Surface roughness did not appear to differ over the body of the fish, although scales at the start of the caudal peduncle had higher skew values than other scales, indicating they have a surface that contains more peaks than valleys. Scale shape also differs along the body, with scales near the base of the tail having a more elongated shape. This study adds to our knowledge of scale structure and diversity in fishes, and the 3D measurement of scale surface structure provides the basis for future testing of functional hypotheses relating scale morphology to locomotor performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.zool.2016.02.006 | DOI Listing |
Emerg Med Australas
October 2025
Australian Centre for Health Services Innovation, School of Public Health & Social Work, Queensland University of Technology, Brisbane, Queensland, Australia.
Reliably defining the risk of adverse in-flight events in aeromedical trauma patients could enable more informed pre-departure treatment and guide central asset allocation to achieve better system-level outcomes. Unfortunately, the current literature base specifically examining the in-flight period is sparse. Flight duration is often considered a proxy for the risk of in-flight deterioration; however, there is limited data to support this commonly held assumption.
View Article and Find Full Text PDFCirc Genom Precis Med
September 2025
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China (J.Z., S.R., L.C., M.C., F.T., B.A., Y.Y., H.L.).
Background: Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.
Methods: Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants.
Circ Genom Precis Med
September 2025
Division of Cardiology, Emory University School of Medicine, Atlanta, GA. (A.K.Y., A.C.R., L.S.S., A.A.Q., Y.V.S.).
Background: Cardio-kidney-metabolic (CKM) disease represents a significant public health challenge. While proteomics-based risk scores (ProtRS) enhance cardiovascular risk prediction, their utility in improving risk prediction for a composite CKM outcome beyond traditional risk factors remains unknown.
Methods: We analyzed 23 815 UK Biobank participants without baseline CKM disease, defined by -Tenth Revision codes as cardiovascular disease (coronary artery disease, heart failure, stroke, peripheral arterial disease, atrial fibrillation/flutter), kidney disease (chronic kidney disease or end-stage renal disease), or metabolic disease (type 2 diabetes or obesity).
Chembiochem
September 2025
Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue., Eau Claire, Wisconsin, 54701, USA.
The development of synthetically-useful biocatalysts requires characterizing the behavior of an enzyme under conditions amenable to preparative-scale reactions. Whole cells harboring the catalyst of interest are often used in such reactions, as protein purification is laborious and expensive. However, monitoring reaction rates when using whole cells is challenging, as cellular debris precludes the use of a continuous assay.
View Article and Find Full Text PDFF1000Res
September 2025
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK.
Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.
View Article and Find Full Text PDF