Publications by authors named "Dylan K Wainwright"

Global climate change and related environmental stress threaten the survival of long-lived tree species. To ensure survival in increasingly unfavorable environments, trees need to either acclimate through phenotypic plasticity, adapt via genetic differentiation, or migrate to more favorable climates altogether. Nonstructural carbohydrate (NSC) storage is a critical trait that supports proper metabolic function in plants and has been shown to prolong their survival in the face of stress.

View Article and Find Full Text PDF

The primary function of the vertebrate jaw is the dorsoventral movement that occurs during opening and closing. Yet, several lineages have evolved the ability to move their jaws laterally, enabling major innovations, like chewing. While lateral jaw motions are primarily known in tetrapods, here, we show that an ecologically dominant lineage of reef fishes (Zanclidae and Acanthuridae) has evolved the ability to laterally rotate their jaws during feeding.

View Article and Find Full Text PDF

Shark skin is covered in denticles that provide texture important for hydrodynamic function. In bony fishes, both skin texture and function are modified by mucus that covers the outermost layer of the skin and scales. Despite the similar potential for mucus to change skin texture and function in shark skin, little is known about the occurrence and effect of external mucus in sharks.

View Article and Find Full Text PDF

Tunas are high-performance pelagic fishes of considerable economic importance and have a suite of biological adaptations for high-speed locomotion. In contrast to our understanding of tuna body and muscle function, mechanosensory systems of tuna are poorly understood. Here we present the discovery of a remarkable sensory lateral line canal within the bilateral tuna keels with tubules that extend to the upper and lower keel surfaces.

View Article and Find Full Text PDF

In functional systems composed of many traits, selection for specialized function can induce trait evolution by acting directly on individual components within the system, or indirectly through networks of trait integration. However, strong integration can also hinder diversification into regions of trait space that are not aligned with axes of covariation among traits. Thus, non-independence among traits may limit functional expansion.

View Article and Find Full Text PDF
Article Synopsis
  • Sharks can replace lost denticles and also grow new denticles without shedding old ones, which could affect their energy costs and how we study fossil shark populations.
  • Research showed that different shark species and body areas have similar rates of missing denticles (0%-6%), but some species, like the smooth dogfish and common thresher shark, have notable differences in denticle loss in specific regions.
  • The process of denticle regrowth involves multiple stages, starting from crown development underneath the skin, and ultimately ensures sharks maintain a functional skin surface, which may help in reducing fouling and repairing damage over time.
View Article and Find Full Text PDF

The scales and skin mucus of bony fishes are both proposed to have a role in beneficially modifying the hydrodynamics of water flow over the body surface. However, it has been challenging to provide direct experimental evidence that tests how mucus and fish scales change the boundary layer in part due to the difficulties in working with live animal tissue and difficulty directly imaging the boundary layer. In this manuscript, we use direct imaging and flow tracking within the boundary layer to compare boundary layer dynamics over surfaces of fish skin with mucus, without mucus, and a flat control surface.

View Article and Find Full Text PDF

Geographic isolation is the primary driver of speciation in many vertebrate lineages. This trend is exemplified by North American darters, a clade of freshwater fishes where nearly all sister species pairs are allopatric and separated by millions of years of divergence. One of the only exceptions is the Lake Waccamaw endemic Etheostoma perlongum and its riverine sister species Etheostoma maculaticeps, which have no physical barriers to gene flow.

View Article and Find Full Text PDF

The coastal waters of the North Pacific are home to the northern clingfish (Gobiesox maeandricus), Pacific spiny lumpsucker (Eumicrotremus orbis) and marbled snailfish (Liparis dennyi) - three fishes that have evolved ventral adhesive discs. Clingfish adhesive performance has been studied extensively, but relatively little is known about the performance of other sticky fishes. Here, we compared the peak adhesive forces and work to detachment of clingfish, lumpsuckers and snailfish on surfaces of varying roughness and over ontogeny.

View Article and Find Full Text PDF

Many aquatic animals swim by undulatory body movements and understanding the diversity of these movements could unlock the potential for designing better underwater robots. Here, we analyzed the steady swimming kinematics of a diverse group of fish species to investigate whether their undulatory movements can be represented using a series of interconnected multi-segment models, and if so, to identify the key factors driving the segment configuration of the models. Our results show that the steady swimming kinematics of fishes can be described successfully using parsimonious models, 83% of which had fewer than five segments.

View Article and Find Full Text PDF
Article Synopsis
  • - Shark skin features dermal denticles, which are tooth-like structures that vary in shape and size across different species and regions, particularly within a small area of skin known as the interbranchial skin.
  • - Research using advanced techniques found that denticles at the leading edge of the gill pouches are shorter, wider, and smoother compared to those at the trailing edge across 13 species of sharks.
  • - The study proposes that these morphological differences may help reduce abrasion during breathing and influence water flow dynamics after it exits the gills, with future work planned to visualize fluid motion over these denticles.
View Article and Find Full Text PDF

Fishes exhibit an astounding diversity of locomotor behaviors from classic swimming with their body and fins to jumping, flying, walking, and burrowing. Fishes that use their body and caudal fin (BCF) during undulatory swimming have been traditionally divided into modes based on the length of the propulsive body wave and the ratio of head:tail oscillation amplitude: anguilliform, subcarangiform, carangiform, and thunniform. This classification was first proposed based on key morphological traits, such as body stiffness and elongation, to group fishes based on their expected swimming mechanics.

View Article and Find Full Text PDF

Leaf habit is a major axis of plant diversity that has consequences for carbon balance since the leaf is the primary site of photosynthesis. Nonstructural carbohydrates (NSCs) produced by photosynthesis can be allocated to storage and serve as a resiliency mechanism to future abiotic and biotic stress. However, how leaf habit affects NSC storage in an evolutionary context has not been shown.

View Article and Find Full Text PDF

Shark skin denticles (scales) are diverse in morphology both among species and across the body of single individuals, although the function of this diversity is poorly understood. The extremely elongate and highly flexible tail of thresher sharks provides an opportunity to characterize gradients in denticle surface characteristics along the length of the tail and assess correlations between denticle morphology and tail kinematics. We measured denticle morphology on the caudal fin of three mature and two embryo common thresher sharks (Alopias vulpinus), and we compared thresher tail denticles to those of eleven other shark species.

View Article and Find Full Text PDF

Finlets are a series of small non-retractable fins common to scombrid fishes (mackerels, bonitos and tunas), which are known for their high swimming speed. It is hypothesized that these small fins could potentially affect propulsive performance. Here, we combine experimental and computational approaches to investigate the hydrodynamics of finlets in yellowfin tuna () during steady swimming.

View Article and Find Full Text PDF

Tunas of the genus Thunnus are a group of high-performance pelagic fishes with many locomotor traits that are convergently shared with other high-performance fish groups. Because of their swimming abilities, tunas continue to be an inspiration for both comparative biomechanics and the design of biomimetic autonomous underwater vehicles (AUVs). Despite the strong history of studies in tuna physiology and current interest in tuna biomechanics and bio-inspired design, we lack quantitative data on the function of many features of tunas.

View Article and Find Full Text PDF

Dolphin skin has long been an inspiration for research on drag reduction mechanisms due to the presence of skin ridges that could reduce fluid resistance. We gathered in vivo three-dimensional surface data on the skin from five species of odontocetes to quantitatively examine skin texture, including the presence and size of ridges. We used these data to calculate k values, which relate surface geometry to changes in boundary layer flow.

View Article and Find Full Text PDF

The skin surface structure of squamate reptiles varies greatly among species, likely because it plays a key role in a range of tasks, such as camouflage, locomotion, self-cleaning, mitigation of water loss and protection from physical damage. Although we have foundational knowledge about squamate skin morphology, we still know remarkably little about how intraspecific variation in skin surface structure translates to functional variation. This gap in our understanding can be in part traced back to: (i) our lack of knowledge on how body size determines skin surface structure; and (ii) the lack of means to perform high-throughput and detailed analysis of the three-dimensional (3D) anatomy of reptilian skin surfaces in a non-destructive manner.

View Article and Find Full Text PDF

Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three-dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro-CT scanning, gel-based surface profilometry, and histology.

View Article and Find Full Text PDF

Tunas of the genus Thunnus possess many morphological and physiological adaptations for their high-performance epipelagic ecology. Although Thunnus anatomy has been studied, there are no quantitative studies on the structure of their scales. We investigated the scales of bigeye tuna (Thunnus obesus) from ten regions of the body using micro computed tomography (µCT)-scanning and histology to quantitatively and qualitatively compare regional scale morphology.

View Article and Find Full Text PDF

The cetacean tail fluke blades are not supported by any vertebral elements. Instead, the majority of the blades are composed of a densely packed collagenous fiber matrix known as the core layer. Fluke blades from six species of odontocete cetaceans were examined to compare the morphology and orientation of fibers at different locations along the spanwise and chordwise fluke blade axes.

View Article and Find Full Text PDF

Remoras of the ray-finned fish family Echeneidae have the remarkable ability to attach to diverse marine animals using a highly modified dorsal fin that forms an adhesive disc, which enables hitchhiking on fast-swimming hosts despite high magnitudes of fluid shear. We present the design of a biologically analogous, multimaterial biomimetic remora disc based on detailed morphological and kinematic investigations of the slender sharksucker (). We used multimaterial three-dimensional printing techniques to fabricate the main disc structure whose stiffness spans three orders of magnitude.

View Article and Find Full Text PDF

Fish scales are morphologically diverse among species, within species, and on individuals. Scales of bony fishes are often categorized into three main types: cycloid scales have smooth edges; spinoid scales have spines protruding from the body of the scale; ctenoid scales have interdigitating spines protruding from the posterior margin of the scale. For this study, we used two- and three-dimensional (2D and 3D) visualization techniques to investigate scale morphology of bluegill sunfish (Lepomis macrochirus) on different regions of the body.

View Article and Find Full Text PDF

Northern clingfish use a ventral suction disc to stick to rough substrates in the intertidal zone. Bacteria, algae and invertebrates grow on these surfaces (fouling) and change the surface properties of the primary substrate, and therefore the attachment conditions for benthic organisms. In this study, we investigate the influence of fouling and surface roughness on the adhesive strength of northern clingfish, Gobiesox maeandricus.

View Article and Find Full Text PDF

The northern clingfish, Gobiesox maeandricus, is able to adhere to slippery, fouled and irregular surfaces in the marine intertidal environment. We have found that the fish can adhere equally well to surfaces with a broad range of surface roughness, from the finest sandpaper (R(a) = 15 µm) to textures suitable for removing finish from flooring (R(a) = 269 µm). The fishes outperform man-made suction cups, which only adhere to the smoothest surfaces.

View Article and Find Full Text PDF