Synthesis of Oligosaccharides Derived from Lactulose (OsLu) Using Soluble and Immobilized Aspergillus oryzae β-Galactosidase.

Front Bioeng Biotechnol

Departamento Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain.

Published: March 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

β-Galactosidase from Aspergillus oryzae offers a high yield for the synthesis of oligosaccharides derived from lactulose (OsLu) by transgalactosylation. Oligosaccharides with degree of polymerization (DP) ≥ 3 have shown to possess higher in vitro bifidogenic effect than di- and tetrasaccharides. Thus, in this work, an optimization of reaction conditions affecting the specific selectivity of A. oryzae β-galactosidase for synthesis of OsLu has been carried out to enhance OsLu with DP ≥ 3 production. Assays with β-galactosidase immobilized onto a glutaraldehyde-agarose support were also carried out with the aim of making the process cost-effective and industrially viable. Optimal conditions with both soluble and immobilized enzyme for the synthesis of OsLu with DP ≥ 3 were 50 °C, pH 6.5, 450 g/L of lactulose, and 8 U/mL of enzyme, reaching yields of ca. 50% (w/v) of total OsLu and ca. 20% (w/v) of OsLu with DP 3, being 6'-galactosyl-lactulose the major one, after a short reaction time. Selective formation of disaccharides, however, was favored at 60 °C, pH 4.5, 450 g/L of lactulose and 8 U/mL of enzyme. Immobilization increased the enzymatic stability to temperature changes and allowed to reuse the enzyme. We can conclude that the use, under determined optimal conditions, of the A. oryzae β-galactosidase immobilized on a support of glutaraldehyde-agarose constitutes an efficient and cost-effective alternative to the use of soluble β-galactosidases for the synthesis of prebiotic OsLu mixtures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780266PMC
http://dx.doi.org/10.3389/fbioe.2016.00021DOI Listing

Publication Analysis

Top Keywords

oryzae β-galactosidase
12
synthesis oligosaccharides
8
oligosaccharides derived
8
derived lactulose
8
oslu
8
lactulose oslu
8
soluble immobilized
8
aspergillus oryzae
8
synthesis oslu
8
oslu dp ≥ 3
8

Similar Publications

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Marine-derived enzymes often show distinct physiological properties and great potential for industrial use. Salt ions may improve the stability and expression efficiency of marine enzymes, which requires salt-resistant host based expression platform. Aspergillus oryzae of good protein expression and secretion was evaluated and explored for this purpose.

View Article and Find Full Text PDF

Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.

View Article and Find Full Text PDF

Radiation dermatitis is a common side effect of radiotherapy, affecting up to 95% of cancer patients receiving radiation therapy and often leading to skin damage, inflammation, and ulceration. The pathogenesis of radiation dermatitis involves complex mechanisms, such as the production of reactive oxygen species (ROS) and sustained inflammatory responses. Current treatments, including topical steroids, moisturisers, and non-steroidal anti-inflammatory drugs (NSAIDs), often provide limited efficacy, primarily addressing symptoms rather than the underlying pathophysiological processes.

View Article and Find Full Text PDF

Exploring the effect of Curdlan and xanthan on physicochemical properties and multiscale structure of rice starch during extrusion.

Food Res Int

November 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. Electronic address:

Hydrocolloids are utilized in starch-based foods for water-holding, thickening, and gelation, yet their molecular interactions with starch in extrusion systems remain underexplored; this study evaluates physicochemical and multiscale structural changes in extruded starch incorporating curdlan (CG) and xanthan (XG). Incorporation of CG and XG significantly counteracted the disruption of the multiscale structure of starch caused by the extrusion treatment, and increased the content of resistant starch. It reduced the content of rapidly digestible starch in extruded starch by 4.

View Article and Find Full Text PDF