Phytochemical Analysis on Quantification and the Inhibitory Effects on Inflammatory Responses from the Fruit of Xanthii fructus.

Pharmacogn Mag

KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea; Korean Medicine Life Science, University of Science and Technology, Daejeon, Republic of Korea.

Published: October 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Xanthii fructus (Compositae) is a traditional herbal medicine used for treating headache, toothache, pruritus, empyema, and rhinitis. In this study of the quality control of X. fructus, we performed simultaneous analysis of nine marker compounds: Protocatechuic acid (1), chlorogenic acid (2), caffeic acid (3), 4,5-dicaffeoylquinic acid (4), ferulic acid (5), 3,5-dicaffeoylquinic acid (6), 1,3-dicaffeoylquinic acid (7), 1,4-dicaffeoylquinic acid (8), and 4,5-dicaffeoylquinic acid (9).

Materials And Methods: Nine components were separated using reversed-phase SunFire™ C18 analytical column and analyzed using high-performance liquid chromatography. We examined the biological effects of the nine marker compounds by determining their anti-inflammatory activities in the murine macrophage cell line RAW 264.7.

Results: Among the nine marker compounds, eight significantly inhibited lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNF-α) production. 1, 3, 5 had significant inhibitory effects on LPS-induced prostaglandin E2 (PGE2) production in RAW 264.7 cells. None of the tested marker compounds had a significant effect on interleukin-6 production in LPS-treated RAW 264.7 cells. Our data demonstrated that each marker compound from X. fructus exerts anti-inflammatory activity by targeting different inflammation-related pathways such as the TNF-α or PGE2 pathway.

Conclusion: Further experiments using in vitro and in vivo models are needed to identify the mechanisms responsible for the anti-inflammatory properties of each marker compound.

Summary: Simultaneous analysis of nine phenylpropanoids in the Xanthii fructus was established using HPLC-PDA system.1,4-dicaffeoylquinic acid significantly inhibited LPS-stimulated TNF-a production.Protocatechuic acid, caffeic acid and ferulic acid had significant inhibitory effects on LPS-induced PGE2 production in RAW 264.7 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4787093PMC
http://dx.doi.org/10.4103/0973-1296.172966DOI Listing

Publication Analysis

Top Keywords

marker compounds
16
acid
13
inhibitory effects
12
xanthii fructus
12
raw 2647
12
2647 cells
12
simultaneous analysis
8
acid caffeic
8
caffeic acid
8
acid 45-dicaffeoylquinic
8

Similar Publications

Background: Janus kinase inhibitors (JAKIs) are small molecules used orally to treat inflammatory and hematological disorders. They have demonstrated impressive efficacy across multiple indications. However, concerns have emerged regarding their safety profile.

View Article and Find Full Text PDF

Bacterial volatile organic compounds (VOCs) have been investigated as non-invasive approaches for the diagnosis of infectious diseases. Here, we aimed to explore potential diagnostic markers by profiling VOCs in cultures of unique clinical Clostridioides difficile (C. difficile) isolates and stool samples from pediatric patients with C.

View Article and Find Full Text PDF

Lentinula edodes (shiitake mushroom) is a widely cultivated edible and medicinal fungus, valued for its bioactive compounds. While East Asian strains have been well studied, Indian populations remain under-characterized. This study explores the genetic and functional diversity of five Indian-origin L.

View Article and Find Full Text PDF

Extremely high toxicity of gaseous intermediate/semi volatile organic compounds emitted from typical incomplete biomass burning in China.

J Hazard Mater

September 2025

Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China.

Incomplete biomass burning emits complex mixture of gaseous and particulate organic pollutants, yet their chemical speciation and toxicity have not been fully identified. This study profiled the organic fingerprinting primarily emitted from typical incomplete biomass burning through nontargeted analysis and estimated their toxic potencies. Gaseous organics exhibited 2.

View Article and Find Full Text PDF

Organophosphorus nerve agents (OPNAs), including G-agents, EGA (ethyltabun, phosphonamidic acid, P-cyano-N,N-diethyl-, ethyl ester) and V-agents, VM (O-ethyl S-(2-diethylaminoethyl) phosphonothiolate), are highly toxic chemical warfare agents (CWAs) with severe risks to human health and environmental security. This study proposes a chemometric-driven framework for forensic tracing of their synthetic pathways using high-resolution GC × GC-TOFMS. By integrating advanced statistical analysis, we identified 160 synthesis-associated chemical attribution signatures (CAS) for EGA and 138 process-specific CAS for VM, with 11 overlapping markers, including ethoxyphosphates and diethylaminoethylamine derivatives.

View Article and Find Full Text PDF