Genome-wide analyses for dissecting gene regulatory networks in the shoot apical meristem.

J Exp Bot

Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain

Published: March 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Shoot apical meristem activity is controlled by complex regulatory networks in which components such as transcription factors, miRNAs, small peptides, hormones, enzymes and epigenetic marks all participate. Many key genes that determine the inherent characteristics of the shoot apical meristem have been identified through genetic approaches. Recent advances in genome-wide studies generating extensive transcriptomic and DNA-binding datasets have increased our understanding of the interactions within the regulatory networks that control the activity of the meristem, identifying new regulators and uncovering connections between previously unlinked network components. In this review, we focus on recent studies that illustrate the contribution of whole genome analyses to understand meristem function.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erw058DOI Listing

Publication Analysis

Top Keywords

regulatory networks
12
shoot apical
12
apical meristem
12
meristem
5
genome-wide analyses
4
analyses dissecting
4
dissecting gene
4
gene regulatory
4
networks shoot
4
meristem shoot
4

Similar Publications

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF

Replication of HIV-1 requires the coordinated action of host and viral transcription factors, most critically the viral transactivator Tat and the host nuclear factor κB (NF-κB). This activity is disrupted in infected cells that are cultured with extracellular vesicles (EVs) present in human semen, suggesting that they contain factors that could inform the development of new therapeutics. Here, we explored the contents of semen-derived EVs (SEVs) from uninfected donors and individuals with HIV-1 and identified host proteins that interacted with HIV Tat and the NF-κB subunit p65.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF