98%
921
2 minutes
20
The kynurenine pathway (KP) of tryptophan degradation contains several neuroactive metabolites that may influence brain function in health and disease. Mounting focus has been dedicated to investigating the role of these metabolites during neurodevelopment and elucidating their involvement in the pathophysiology of psychiatric disorders with a developmental component, such as schizophrenia. In this review, we describe the changes in KP metabolism in the brain from gestation until adulthood and illustrate how environmental and genetic factors affect the KP during development. With a particular focus on kynurenic acid, the antagonist of α7 nicotinic acetylcholine (α7nACh) and N-methyl-d-aspartate (NMDA) receptors, both implicated in modulating brain development, we review animal models designed to ascertain the role of perinatal KP elevation on long-lasting biochemical, neuropathological, and behavioral deficits later in life. We present new data demonstrating that combining perinatal choline-supplementation, to potentially increase activation of α7nACh receptors during development, with embryonic kynurenine manipulation is effective in attenuating cognitive impairments in adult rat offspring. With these findings in mind, we conclude the review by discussing the advancement of therapeutic interventions that would target not only symptoms, but potentially the root cause of central nervous system diseases that manifest from a perinatal KP insult. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010529 | PMC |
http://dx.doi.org/10.1016/j.neuropharm.2016.03.001 | DOI Listing |
J Agric Food Chem
September 2025
College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030000, China.
Atherosclerosis (AS) is increasingly recognized as a disease influenced not only by lipid metabolism and inflammation but also by the gut microbiota and their bioactive metabolites. Isoquercitrin (ISO), a natural flavonoid with food-medicine homology, has shown promising antiatherosclerotic potential, yet its underlying mechanisms remain unclear. In this study, ISO administration significantly reduced plaque burden, improved lipid profiles, and restored gut microbial balance by enriching beneficial taxa, such as , , and .
View Article and Find Full Text PDFBiol Psychiatry
October 2025
Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychology, The University of Texas at Austin, Austin, Texas. Electronic address:
Physiol Behav
September 2025
Department of Pharmacology, School of Pharmacy & Technology Management, SVKM NMIMS Global University, Dhule 424001, Maharashtra, India. Electronic address:
Preclinical models are essential for understanding the pathophysiology of intermittent explosive disorder (IED) in rodents. However, current models fail to fully uncover the molecular mechanisms behind restraint stress-induced aggression. We introduced a restrainer combined with a biting rod to measure IED-associated symptoms in stressed rats.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Osteonecrosis and Joint Reconstruction Department, Xi'an Honghui Hospital, Xi'an, Shaanxi Province, China. Electronic address:
Osteoarthritis (OA) is a common chronic degenerative joint disease characterized by complex immune and metabolic abnormalities. However, the role of amino acid metabolism in OA has remained insufficiently elucidated. In this study, we systematically explored the potential role of tryptophan metabolism abnormalities in the pathogenesis of OA.
View Article and Find Full Text PDFNPJ Metab Health Dis
September 2025
Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by unexplained fatigue, post-exertional malaise (PEM), and cognitive dysfunction. ME/CFS patients often report a prodrome consistent with infection. We present a multi-omics analysis based on plasma metabolomic and proteomic profiling, and immune responses to microbial stimulation, before and after exercise.
View Article and Find Full Text PDF