Missed, Not Missing: Phylogenomic Evidence for the Existence of Avian FoxP3.

PLoS One

Institute of Structural and Molecular Biology and Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom.

Published: August 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Forkhead box transcription factor FoxP3 is pivotal to the development and function of regulatory T cells (Tregs), which make a major contribution to peripheral tolerance. FoxP3 is believed to perform a regulatory role in all the vertebrate species in which it has been detected. The prevailing view is that FoxP3 is absent in birds and that avian Tregs rely on alternative developmental and suppressive pathways. Prompted by the automated annotation of foxp3 in the ground tit (Parus humilis) genome, we have questioned this assumption. Our analysis of all available avian genomes has revealed that the foxp3 locus is missing, incomplete or of poor quality in the relevant genomic assemblies for nearly all avian species. Nevertheless, in two species, the peregrine falcon (Falco peregrinus) and the saker falcon (F. cherrug), there is compelling evidence for the existence of exons showing synteny with foxp3 in the ground tit. A broader phylogenomic analysis has shown that FoxP3 sequences from these three species are similar to crocodilian sequences, the closest living relatives of birds. In both birds and crocodilians, we have also identified a highly proline-enriched region at the N terminus of FoxP3, a region previously identified only in mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777427PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150988PLOS

Publication Analysis

Top Keywords

foxp3
9
evidence existence
8
foxp3 ground
8
ground tit
8
missed missing
4
missing phylogenomic
4
phylogenomic evidence
4
avian
4
existence avian
4
avian foxp3
4

Similar Publications

Steroid-refractory gut acute graft-versus-host disease (SR-Gut-aGVHD) is the major cause of nonrelapse death after allogeneic hematopoietic cell transplantation. High numbers of donor-type IL-22+ T cells, IL-22-dependent dysbiosis, and loss of antiinflammatory CX3CR1hi mononuclear phagocytes (MNPs) play critical roles in SR-Gut-aGVHD pathogenesis. CEACAM1 on intestinal epithelial cells (IECs) is proposed to regulate bacterial translocation and subsequent immune responses in the intestine.

View Article and Find Full Text PDF

Despite advances in antiretroviral therapy, HIV-1 persistence and immune dysregulation remain unresolved challenges. Here, we demonstrate that curcumin, a low-toxicity natural compound, can inhibit HIV-1 through simultaneous inhibition of the PI3K/AKT and JAK/STAT pathways, leading to downregulation of the viral co-receptor CCR5 and the immune checkpoint transcription factor FOXP3. Using CHIP and EMSA experiments, we found that curcumin disrupts the binding of FOXP3 to the CCR5 promoter, thereby reducing viral entry.

View Article and Find Full Text PDF

Background: Regulatory T cells (Tregs) are found to be critical for maintaining immune tolerance to self-antigens; however, their status in primary Sjögren's syndrome (pSS) remains unclear. We investigated alterations in the abundance of peripheral Tregs in a large pSS cohort and their implications for patients.

Methods: Levels of CD4+CD25+FOXP3+Treg cells in the peripheral blood of 624 patients with pSS, and 93 healthy controls (HCs) were detected using modified flow cytometry (FCM).

View Article and Find Full Text PDF

Background: Dysregulation of immune responses may influence the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH). Our recent data suggest the role of Th17-related cytokines in fibrosis advancement in MASLD. Herein, we aimed to analyze T-regulatory and Th17-producing T-lymphocytes by flow cytometry with respect to MASLD progression.

View Article and Find Full Text PDF

Metabolites as regulators of autoimmune diseases.

Front Immunol

September 2025

Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

Immune cell metabolism is essential for regulating immune responses, including activation, differentiation, and function. Through glycolysis and oxidative phosphorylation (OXPHOS), metabolism supplies energy and key intermediates for cell growth and proliferation. Importantly, some metabolites generated during these processes act as signaling molecules that influence immune activity.

View Article and Find Full Text PDF