98%
921
2 minutes
20
Combinations of β-lactams of the carbapenem class, such as meropenem, with clavulanate, a β-lactamase inhibitor, are being evaluated for the treatment of drug-resistant tuberculosis. However, carbapenems approved for human use have never been optimized for inactivation of the unusual β-lactam targets of Mycobacterium tuberculosis or for escaping to hydrolysis by broad-spectrum β-lactamase BlaC. Here, we report three routes of synthesis for modification of the two side chains carried by the β-lactam and the five-membered rings of the carbapenem core. In particular, we show that the azide-alkyne Huisgen cycloaddition reaction catalyzed by copper(I) is fully compatible with the highly unstable β-lactam ring of carbapenems and that the triazole ring generated by this reaction is well tolerated for inactivation of the L,D-transpeptidase LdtMt1 target. Several of our new carbapenems are superior to meropenem both with respect to the efficiency of in vitro inactivation of LdtMt1 and reduced hydrolysis by BlaC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.6b00096 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Maxillofacial Surgery, Xiangya Hospital of Stomatology, Central South University, Changsha 410013, China.
Peptide-based drugs possess several advantages, including high specificity, low immunogenicity, minimal accumulation, and fewer drug-drug interactions, making them a novel and efficient therapeutic class for various diseases. In recent years, peptide-based drugs have shown great potential and broad application prospects in the treatment of oral infectious diseases, tissue injury and repair, tumors, and complex oral mucosal disorders, acting either through direct mechanisms or indirect modulation. Oral administration remains the preferred route due to its non-invasive, painless nature and ease of management; however, gastrointestinal pH can inactivate or even degrade peptide drugs.
View Article and Find Full Text PDFTurk J Pharm Sci
September 2025
Gate Institute of Pharmaceutical Sciences, Telangana, India.
Objectives: Bortezomib (BTZ) functions as an androgen receptor signalling inhibitor, is used for the treatment of prostate cancer, and has been sanctioned by the United States Food and Drug Administration. The medicinal applications of BTZ are impeded by low solubility, first-pass metabolism, and restricted bioavailability. This study aimed to develop and enhance polylactic acid-co-glycolic acid (PLGA) nanobubbles (NBs) as a sustained-release mechanism for BTZ, thereby augmenting stability and bioavailability.
View Article and Find Full Text PDFFungal Biol
October 2025
Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China; School of Basic Medicine, Qilu Medical University, Zibo, 255300, Shandong, China. Electronic address:
Oleaginous filamentous fungus Mucor circinelloides harbors a GATA transcription activator AreA, which regulates nitrogen metabolism. In our previous study, deletion of AreA resulted in increased lipid production, while its overexpression reduced lipid synthesis. Although it is not a direct lipogenesis regulator, AreA influences metabolic flux by modulating nitrogen utilization pathways, which in turn affects carbon distribution.
View Article and Find Full Text PDFFungal Biol
October 2025
Microbiology, Department of Biology, Utrecht University, Utrecht, the Netherlands. Electronic address:
Agaricus bisporus is grown commercially on compost topped with a peat-based casing layer. Water is translocated from compost and casing to enable formation of mushrooms. Here, water translocation from casing and different parts of the compost into mushrooms was studied and linked to their water potential and contributing factors thereof: i.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India. Electronic address:
Polysaccharide copolymers Conjuates have surfaced as a versatile foundation in the development of advanced smart drug delivery systems, owing to their inherent biocompatibility, biodegradability, and capacity for chemical modification. This review brings into focus the recent advances in co-polymeric drug delivery systems based on naturally occurring polysaccharides like chitosan, alginate, dextran, hyaluronic acid, pullulan, guar gum, xanthan gum, agarose, gellan gum, and starch. Their structural malleability and functionalization capabilities are emphasized to engineer therapeutic payload stability, bioavailability, and controlled release.
View Article and Find Full Text PDF