98%
921
2 minutes
20
We report on the fabrication of a two-dimensional topological insulator Bi(111) bilayer on Sb nanofilms via a sequential molecular beam epitaxy growth technique. Our angle-resolved photoemission measurements demonstrate the evolution of the electronic band structure of the heterostructure as a function of the film thickness and reveal the existence of a two-dimensional spinful massless electron gas within the top Bi bilayer. Interestingly, our first-principles calculation extrapolating the observed band structure shows that, by tuning down the thickness of the supporting Sb films into the quantum dimension regime, a pair of isolated topological edge states emerges in a partial energy gap at 0.32 eV above the Fermi level as a consequence of quantum confinement effect. Our results and methodology of fabricating nanoscale heterostructures establish the Bi bilayer/Sb heterostructure as a platform of great potential for both ultra-low-energy-cost electronics and surface-based spintronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.6b00987 | DOI Listing |
Phys Rev Lett
August 2025
Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, 75005 Paris, France.
We investigate nonreciprocal XY (NRXY) models defined on two-dimensional lattices in which the coupling strength of a spin with its neighbors varies with their position in the frame defined by the current spin orientation. As expected from the seminal work of Dadhichi et al., [Nonmutual torques and the unimportance of motility for long-range order in two-dimensional flocks, Phys.
View Article and Find Full Text PDFSci Adv
September 2025
Materials Department, University of California, Santa Barbara, CA 93106-5050, USA.
Thermoelectric responses in two-dimensional electron gases subjected to magnetic fields have the potential to provide unique information about quasiparticle statistics. In this study, we show that chiral edge states play a key role in thermoelectric Hall bar measurements by completely controlling the direction of the internal thermal gradient. To this end, we perform measurements of the magnetothermoelectric responses of cadmium arsenide quantum wells.
View Article and Find Full Text PDFChem Sci
September 2025
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
Amorphous materials with thickness thinned down to the single-layer limit have attracted increasing interest due to their well-defined disorder and emerging unique properties, such as disorder-dominated electronic states, high-density unsaturated coordination, enhanced quantum confinement, These features could enable innovative applications in electronics, photoelectronics, catalysis, and beyond. In this perspective, we provide an overview of recent advances in two-dimensional (2D) amorphous materials approaching the single-layer limit. We first introduce newly-developed key structural descriptors for these systems, including local bonding, topological disorder, and chemical composition.
View Article and Find Full Text PDFACS Nano
September 2025
School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia.
Strong electron-hole interactions in a semimetal or narrow-gap semiconductor may drive a ground state of condensed excitons. Monolayer WTe has been proposed as a host material for such an exciton condensate, but the order parameter─the key signature of a macroscopic quantum-coherent condensate─has not been observed. Here, we use Fourier-transform scanning tunneling spectroscopy (FT-STS) to study quasiparticle interference (QPI) and periodic modulations of the local density of states (LDOS) in monolayer WTe.
View Article and Find Full Text PDFACS Nano
September 2025
Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China.
Superlattices (SLs) based on two-dimensional (2D) van der Waals (vdW) materials, abbreviated as 2D-SLs, have garnered significant attention due to their customizable properties. 2D-SLs can be engineered by mechanical stacking or chemical intercalation to achieve diverse forms of symmetry breaking, resulting in exotic phenomena like the quantum anomalous Hall effect and topological magnetism. Hitherto, broken symmetries in 2D-SLs have been widely produced within lateral planes or three dimensions.
View Article and Find Full Text PDF