Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN)--another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772549PMC
http://dx.doi.org/10.1038/srep22504DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
28
conductivity w-zno
12
w-zno
9
wurtzite zinc-oxide
8
first-principles lattice
8
wide bandgap
8
bandgap semiconductor
8
large discrepancies
8
w-zno thermal
8
smaller phonon
8

Similar Publications

This study introduces a back filter installed at the end of the exhaust pipe of city buses. The impact of the metal type used in its construction on the absorption of suspended particles and the reduction of sulfides in diesel engine exhaust gases is investigated. The back filter is constructed from three metals: copper, zinc, and nickel.

View Article and Find Full Text PDF

Scalable Photothermal Superhydrophobic Deicing Coating with Mechanochemical-Thermal Robustness.

ACS Appl Mater Interfaces

September 2025

Department of Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.

Developing scalable and robust deicing coatings is essential for real-world applications, yet current coatings either suffer from intrinsic fragility or low thermal conductivity, limiting sustainability and deicing effectiveness. Here, we report a scalable and durable photothermal superhydrophobic coating coupling with enhanced thermal conductivity, engineered by embedding carbon nanotubes within a perfluoroalkoxy polymer matrix. Our design achieved 97.

View Article and Find Full Text PDF

Zirconium disilicide (ZrSi) ceramics have excellent physical and chemical properties and are employed in aerospace, energy, and chemical industries. Currently, the preparation and properties of ZrSi ceramics have been less studied. To comprehensively study the characteristics of ZrSi ceramics, in this study, dense bulk ZrSi ceramic samples are successfully prepared by the high-pressure-high-temperature (HPHT) sintering technique.

View Article and Find Full Text PDF

Thermal rectification, arising from asymmetric heat transport under opposite temperature gradients, is essential for thermal management in electronics. We present a generalized optimization strategy for two-segment rectifiers based on Fourier's law, showing that the rectification ratio $R$, defined as the forward-to-reverse heat flux ratio, is maximized when the interface temperatures coincide in both directions. By expressing $R$ as a function of interface temperature and extending the analysis to arbitrary temperature-dependent thermal conductivities $\kappa(T)$, we develop an analytical framework to optimize rectifiers with dissimilar segments.

View Article and Find Full Text PDF

Recent advances in eutectogels: Preparation, properties and applications.

Adv Colloid Interface Sci

September 2025

Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China. Electronic address:

Multiple stretchable gels with conductivity have been thoroughly prepared in diverse solvents historically to modulate their superlative properties in a multitude of applications, such as soft robotics, wearable devices, and e-skins. Eutectogels are considered as an emerging class of gels that combine the best features of both hydrogels and organogels, including environmental friendliness, thermal stability and customizable nature. Eutectogels, composed of deep eutectic solvents (DES) immobilized within different matrices, not only inherit the merits of DES, but also show some additional properties derived from the special structure and compositions, which are conducive to development potential.

View Article and Find Full Text PDF