98%
921
2 minutes
20
Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769174 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150431 | PLOS |
Pestic Biochem Physiol
November 2025
College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Chongqing Key Laboratory of Vector Control and Utilization, Chongqing,
As key pollinators, bees are increasingly threatened by environmental stressors such as heavy metals, pesticides, and temperature fluctuations, which can cause oxidative stress and disrupt cellular homeostasis. Glutathione S-transferases (GSTs) play crucial roles in antioxidant defense and detoxification, yet systematic studies on bee GST families remain limited. Here, we conducted a genome-wide analysis of cytosolic GST genes in 13 bee species, identifying 146 genes in total.
View Article and Find Full Text PDFFungal Biol
October 2025
Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir
Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.
View Article and Find Full Text PDFMicrobiol Res
September 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
Cadmium (Cd) contamination in coastal regions poses severe environmental risks, yet bacterial defense mechanisms against Cd remain poorly understood. This study unveils distinct tolerant strategies of two highly Cd-tolerant bacteria isolated from the Yangtze River estuary: Comamonas sp. Y49 and Aeromonas sp.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
Faculty of Applied Ecology, Agricultural Science and Biotechnology, University of Inland Norway, Elverum, Norway.
Soil contamination with salinity and heavy metals such as cadmium (Cd) is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizobacteria PGPR and organic agents such as salicylic acid (SA) are considered major protectants to alleviate abiotic stresses, the study of these bacteria and organic acids to ameliorate the toxic effects of salinity and Cd remains limited. Therefore, the present study was conducted to investigate the individual and combined effects of PGPR and SA on enhancing the phytoremediation of salinity (100 mM NaCl) and Cd (50 µM CdCl₂) using rice ( L.
View Article and Find Full Text PDFBiometals
September 2025
Fish Research Centre, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt.
Bioaccumulation of metals and metalloids in marine environments poses a significant risk to both human and aquatic health, with seasonal fluctuations substantially influencing its dynamics and magnitude. This study investigated the impact of metals and metalloids exposure on the health of Wallago attu (Wallago catfish) and Catla catla (Indian carp) inhabiting the Head Siphon, Mailsi, Pakistan. This study involved the seasonal (May 2022, October 2022, April 2023) assessment of physicochemical properties and the concentrations of several metals and metalloids-copper (Cu), chromium (Cr), arsenic (As), cadmium (Cd), nickel (Ni), zinc (Zn), and iron (Fe)-in water samples.
View Article and Find Full Text PDF