Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Activating transcription factor 2 (ATF2) is a member of the cAMP response element binding protein family that heterodimerizes and activates other transcription factors involved in stress and DNA damage responses, growth, differentiation and apoptosis. ATF2 has been investigated as a potential carcinogenic biomarker in certain types of cancer, such as melanoma. However, its function and clinical significance in non-small cell lung cancer (NSCLC) has not been well studied. Therefore, the present study aimed to analyze the association between ATF2/phosphorylated (p)-ATF2 expression and NSCLC malignant behavior, and discuss its clinical significance. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the expression of ATF2 in NSCLC cell lines and fresh NSCLC tissue samples. In addition, immunohistochemistry (IHC) was performed to identify the location and expression of ATF2 and p-ATF2 (threonine 71) in paraffin-embedded sections of NSCLC and adjacent normal tissue. The results demonstrated that ATF2 was markedly overexpressed in the NSCLC cells and significantly overexpressed in the fresh NSCLC tissues compared with the control cells and samples (86 paraffin-embedded tissue sections), respectively (P<0.01). Further data demonstrated that ATF2 expression levels were significantly increased in tumor tissues compared to normal tissues and ATF2 was located in the cytoplasm and nucleus. ATF2 expression was closely associated with adverse clinical characteristics such as TNM stage (P=0.002), tumor size (P=0.018) and metastasis (P=0.027). In addition, nuclear p-ATF2 staining was positive in 65/86 samples of NSCLC. Furthermore, the Kaplan-Meier analysis indicated that patients with high levels of ATF2 and p-ATF2 expression had a significantly shorter overall survival compared with patients exhibiting a low expression (P<0.01 and P<0.05, respectively). Subsequent experiments revealed that cell growth decreased following knockdown of ATF2 expression using RNA interference, indicating that ATF2 may suppress cell proliferation. Taken together, the results of the present study demonstrated that ATF2 and p-ATF2 were significantly overexpressed in NSCLC tissues, and ATF2 and p-ATF2 overexpression predicted significantly worse outcomes for patients with NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727085PMC
http://dx.doi.org/10.3892/ol.2015.3922DOI Listing

Publication Analysis

Top Keywords

activating transcription
8
transcription factor
8
non-small cell
8
cell lung
8
clinical significance
8
expression atf2
8
fresh nsclc
8
nsclc
7
atf2
5
expression
4

Similar Publications

Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-positive (AAB), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine subtypes.

View Article and Find Full Text PDF

CD8HLA-DRCD27 T cells define a population of naturally occurring regulatory precursors in humans.

Sci Adv

September 2025

Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.

Regulatory T cells are essential for immune homeostasis. While CD4 T cells are well characterized, CD8 T cells remain less understood and are primarily observed in pathological or experimental contexts. Here, we identify a naturally occurring CD8 regulatory precursor T cell at the steady state, defined by a CD8HLA-DRCD27 phenotype and a transcriptome resembling CD4 T cells.

View Article and Find Full Text PDF

Transcriptome analysis of shade-induced growth and photosynthetic responses in soybean cultivars.

PLoS One

September 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei

Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.

View Article and Find Full Text PDF

Chronic diarrhea is a frequent gastrointestinal complication in both type 1 (T1D) and type 2 diabetes (T2D), although the underlying mechanisms differ: T1D is linked to autonomic neuropathy and disrupted transporter regulation, while T2D is often linked to medications and intestinal inflammation. Using streptozotocin-induced mouse models of T1D and T2D, we observed increased luminal fluid in the small intestine of both. Given the role of Na⁺/H⁺ exchanger 3 (NHE3) in fluid absorption and its loss in most diarrheal diseases, we examined NHE3 expression across intestinal segments.

View Article and Find Full Text PDF

The study of plant biology has traditionally focused on investigations conducted at the tissue, organ, or whole plant level. However, single-cell transcriptomics has recently emerged as an important tool for plant biology, enabling researchers to uncover the expression profiles of individual cell types within a tissue. The application of this tool has revealed new insights into cell-to-cell gene expression heterogeneity and has opened new avenues for research in plant biology.

View Article and Find Full Text PDF