Modeling conductive cooling for thermally stressed dairy cows.

J Therm Biol

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States.

Published: February 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2016.01.004DOI Listing

Publication Analysis

Top Keywords

conductive cooling
12
dairy cows
12
relative humidity
12
cooled surface
8
water mattress
8
air temperature
8
level wetness
8
wetness skin
8
skin surface
8
heat flux
8

Similar Publications

Crystallization and crystal morphology of polymers: A multiphase-field study.

J Thermoplast Compos Mater

August 2025

Institute for Applied Materials - Microstructure Modeling and Simulation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

In this paper, we introduce a coarse-grained model of polymer crystallization using a multiphase-field approach. The model combines a multiphase-field method, Nakamura's kinetic equation, and the equation of heat conduction for studying microstructural evolution of crystallization under isothermal and non-isothermal conditions. The multiphase-field method provides flexibility in adding any number of phases with different properties making the model effective in studying blends or composite materials.

View Article and Find Full Text PDF

Study on Permeability and Flow Characteristics of Composite Thermosensitive Hydrogel and Its Fire Prevention and Extinguishment Performance.

ACS Omega

September 2025

State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China.

This study focuses on the issues of poor fluidity, low penetration into residual coal, and suboptimal inhibition of coal spontaneous combustion associated with traditional coal mine gel fire retardants. The permeability and flow characteristics of a sodium alginate-based composite thermosensitive hydrogel, as well as its fire prevention and extinguishment performance, were investigated. The findings suggest that the thermosensitive hydrogel behaves as a pseudoplastic fluid at 40 °C and a yield-pseudoplastic fluid at 65 °C, exhibiting shear-thinning behavior with increasing shear rate.

View Article and Find Full Text PDF

Combined inflation and cooling method improves lung function in uncontrolled donation after circulatory death.

J Thorac Cardiovasc Surg

September 2025

Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan. Electronic address:

Objective: Currently, the two methods used to preserve lungs from uncontrolled donation after circulatory death-topical cooling and inflation-result in the suboptimal utilization of lungs. This study aimed to introduce an approach that combines cooling and inflation to investigate whether it improves lung conditions in a swine model, even if the lungs had been damaged with long-term warm ischemia, such as in out-of-hospital cardiac arrest.

Methods: Donor lungs subjected to 1.

View Article and Find Full Text PDF

Homo-layer flexible BiTe-based films with high thermoelectric performance.

Sci Adv

September 2025

Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen 518055, China.

Here, we demonstrate unconventional scalable and sustainable manufacturing of flexible n-type BiTe films via physical vapor deposition and homo-layer fusion engineering. The achieved ultrahigh power factor of up to 30.0 microwatts per centimeter per square kelvin and ultralow lattice thermal conductivity of 0.

View Article and Find Full Text PDF

Although intelligent superwettability materials with tunable wettability have been extensively studied in oil-water separation, they still exhibit several limitations including singular dimension of response, nondurable surface modification, and inadequate on-demand separation capabilities. Herein, we propose an ingenious strategy that combines pH-responsive polymer and shape memory material to achieve intelligent dual-regulation of surface wettability and pore size. A porous double-regulated foam (DRF) is obtained by uniformly mixing epoxy resin with PMMA--PDEAEMA solution and one-piece curing it through salt template method.

View Article and Find Full Text PDF