98%
921
2 minutes
20
Background: The production and development of an effective fungicidal drug requires the identification of an essential fungal protein as a drug target. Aconitase (ACO) is a mitochondrial protein that plays a vital role in tricarboxylic acid (TCA) cycle and thus production of energy within the cell.
Objectives: The current study aimed to sequence Candida krusei ACO gene and determine any amino acid residue differences between human and fungal aconitases to obtain selective inhibition.
Materials And Methods: Candida krusei (ATCC: 6258) aconitase gene was determined by 5'Rapid Amplification of cDNA Ends (RACE) method and degenerate Polymerase Chain Reaction (PCR) and analyzed using bioinformatics softwares.
Results: One thousand-four hundred-nineteen nucleotide of C. krusei aconitase gene were clarified and submitted in Genbank as a partial sequence and then taxonomic location of C. krusei was determined by nucleotide and amino acid sequences of this gene. The comparison of nucleotide and amino acid sequences of Candida species ACO genes showed that C. krusei possessed characteristic sequences. No significant differences were observed between C. krusei and human aconitases within the active site amino acid residues.
Conclusions: Results of the current study indicated that aconitase was not a suitable target to design new anti-fungal drugs that selectively block this enzyme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736022 | PMC |
http://dx.doi.org/10.5812/jjm.25218 | DOI Listing |
Anim Sci J
January 2025
Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
As sheep production standards progress, and animals are bred for high production in terms of the number and weight of lambs weaned per ewe, research has identified a difference in the physiology of single lambs compared to multiple born lambs. The current study aimed to report the baseline amino acid (AA) profiles and blood gas concentrations in newborn, Merino single and twin lambs. From 120 days of gestation, 50 single-bearing and 50 twin-bearing, naturally mated Merino ewes were monitored for signs of approaching parturition.
View Article and Find Full Text PDFJ Biomed Sci
September 2025
Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt.
Background: Apples are important for human nutrition because these provide vital nutrients, including vitamins and minerals, that are needed for a balanced diet. A suitable environment for the growth and survival of various microorganisms is also provided by multiple nutrients, such as carbohydrates, minerals, vitamins, and amino acids. Penicillium spp.
View Article and Find Full Text PDFNat Metab
September 2025
Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.
View Article and Find Full Text PDFNat Biotechnol
September 2025
Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
Targeted protein degraders hold potential as therapeutic agents to target conventionally 'undruggable' proteins. Here, we develop a high-throughput screen, DEath FUSion Escaper (DEFUSE), to identify small-molecule protein degraders. By conjugating the protein of interest to a fast-acting triggerable death protein, this approach translates target protein degradation into a cell survival phenotype to illustrate the presence of degraders.
View Article and Find Full Text PDF