Core-Shell Vanadium Modified Titania@β-In2S3 Hybrid Nanorod Arrays for Superior Interface Stability and Photochemical Activity.

ACS Appl Mater Interfaces

Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.

Published: April 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Core-shell rutile TiO2@β-In2S3 and modified V-TiO2@β-In2S3 were synthesized to develop bilayer systems to uphold charge transport via an effective and stable interface. Morphological studies revealed that β-In2S3 was deposited homogeneously on V-TiO2 as compared to unmodified TiO2 nanorod arrays. X-ray photoelectron spectroscopy (XPS) and electron energy loss spectrometry studies verified the presence of various oxidation states of vanadium in rutile TiO2 and the vanadium surface was utilized for broadening the charge collection centers in host substrate layer and hole quencher window. Subsequently, X-ray diffraction, high-resolution transmission electron microscopy, and Raman spectra confirmed the rutile phases of TiO2 and modified V-TiO2 along with the phases of crystalline β-In2S3. XPS valence band study explored the interaction of valence band quazi Fermi levels of β-In2S3 with the conduction band quazi Fermi levels of modified V-TiO2 for enhanced charge collection at the interface. Photoelectrochemical studies show that the photocurrent density of V-TiO2@β-In2S3 is 1.42 mA/cm(2) (1.5AM illumination). Also, the frequency window for TiO2 was broadened by the vanadium modification in rutile TiO2 nanorod arrays, and the lifetime of the charge carrier and stability of the interface in V-TiO2@β-In2S3 were enhanced compared to the unmodified TiO2@β-In2S3. These findings highlight the significance of modifications in host substrates and interfaces, which have profound implications on interphase stability, photocatalysis and solar-fuel-based devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b10147DOI Listing

Publication Analysis

Top Keywords

nanorod arrays
12
compared unmodified
8
tio2 nanorod
8
rutile tio2
8
charge collection
8
modified v-tio2
8
valence band
8
band quazi
8
quazi fermi
8
fermi levels
8

Similar Publications

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

The Role of Phospholipids in Mitochondrial Dynamics and Associated Diseases.

Front Biosci (Landmark Ed)

August 2025

University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, 49330 Angers, France.

The bioenergetic machinery of the cell is protected and structured within two layers of mitochondrial membranes. The mitochondrial inner membrane is extremely rich in proteins, including respiratory chain complexes, substrate transport proteins, ion exchangers, and structural fusion proteins. These proteins participate directly or indirectly in shaping the membrane's curvature and facilitating its folding, as well as promoting the formation of nanotubes, and proton-rich pockets known as cristae.

View Article and Find Full Text PDF

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF

The spontaneous formation of an ordered array of twisted cobalt(II) porphyrins yields a 2D self-assembled structure that is then wrapped around multiwalled carbon nanotubes (MWCNTs) and characterized using different techniques. The structure of β-tetracyano--tetraphenylporphyrinatocobalt(II) (2-Co) shows axial ligation of the metal center with cyano groups when it is adsorbed on the nanotube sidewalls, and the nanotube acts as a template for the formation of the framework layer. The electrocatalytic applications of the formed conjugate are explored in terms of the activity and the selectivity in the oxygen reduction reaction (ORR) in basic media.

View Article and Find Full Text PDF

Design principles for construction of DNA-based nanostructures.

Adv Drug Deliv Rev

September 2025

Department of Chemistry, Purdue University, West Lafayette 47907, IN 47907, USA. Electronic address:

DNA nanotechnology, a cutting-edge field that constructs sophisticated DNA-based nanostructures by harnessing the unparalleled programmability of DNA, has evolved into a powerful tool for applications in therapy, biosensing, logic computation, and more. This review outlines the fundamental strategies for constructing DNA nanostructures, beginning with the design of basic building blocks such as small, symmetric tiles (e.g.

View Article and Find Full Text PDF