98%
921
2 minutes
20
Improved properties arise in transition metal dichalcogenide (TMDC) materials when they are stacked onto insulating hexagonal boron nitride (h-BN). Therefore, the scalable fabrication of TMDCs/h-BN heterostructures by direct chemical vapor deposition (CVD) growth is highly desirable. Unfortunately, to achieve this experimentally is challenging. Ideal substrates for h-BN growth, such as Ni, become sulfides during the synthesis process. This leads to the decomposition of the pregrown h-BN film, and thus no TMDCs/h-BN heterostructure forms. Here, we report a thoroughly direct CVD approach to obtain TMDCs/h-BN vertical heterostructures without any intermediate transfer steps. This is attributed to the use of a nickel-based alloy with excellent sulfide-resistant properties and a high catalytic activity for h-BN growth. The strategy enables the direct growth of single-crystal MoS2 grains of up to 200 μm(2) on h-BN, which is approximately 1 order of magnitude larger than that in previous reports. The direct band gap of our grown single-layer MoS2 on h-BN is 1.85 eV, which is quite close to that for free-standing exfoliated equivalents. This strategy is not limited to MoS2-based heterostructures and so allows the fabrication of a variety of TMDCs/h-BN heterostructures, suggesting the technique has promise for nanoelectronics and optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5b06254 | DOI Listing |
Eur J Med Chem
September 2025
State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:
The Werner syndrome RecQ helicase (WRN) has recently emerged as a novel synthetic lethality target for microsatellite instability-high (MSI-H) cancers. However, available WRN inhibitors or degraders is still lacking so far. Particularly, chemically designed probes capable of degrading WRN irrespective of microsatellite status remain unexplored.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
A potential replacement that alleviates the shortcomings of the dominant light absorber materials used in solar photovoltaics has been synthesized, and its microstructural, electronic structure, and optical properties have been investigated. KCuS crystals were synthesized by the carbonate method. Transmission electron microscopy (TEM) established [010] as the growth direction of the needle-like monoclinic crystals.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Program of Computational Sciences, Bard College, Annandale-on-Hudson, New York, United States of America.
Agent-based models (ABMs) have become essential tools for simulating complex biological, ecological, and social systems where emergent behaviors arise from the interactions among individual agents. Quantifying uncertainty through global sensitivity analysis is crucial for assessing the robustness and reliability of ABM predictions. However, most global sensitivity methods demand substantial computational resources, making them impractical for highly complex models.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Mathematical and Statistical Methods (Biometris), Wageningen University, Wageningen, The Netherlands.
Many plant cell functions, including cell morphogenesis and anisotropic growth, rely on the self-organisation of cortical microtubules into aligned arrays with the correct orientation. An important ongoing debate is how cell geometry, wall mechanical stresses, and other internal and external cues are integrated to determine the orientation of the cortical array. Here, we demonstrate that microtubule-based nucleation can markedly shift the balance between these often competing directional cues.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Medicine, Al-Quds University, Jerusalem, Palestine.
Background: Undernutrition remains a persistent public health concern among young children in Palestine, shaped by a range of socioeconomic and dietary factors. This study applies a Structural Equation Modeling (SEM) approach to explore both direct and indirect determinants of child growth among children aged 6-59 months in the West Bank.
Methods: Data were drawn from a 2022 cross-sectional survey involving 300 children selected from 1,400 households.