Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7319822DOI Listing

Publication Analysis

Top Keywords

collagen network
12
spectral approach
8
quantitative description
8
nonlinear optical
8
assessment collagen
8
collagen structure
8
description collagen
8
collagen
7
approach quantitative
4
cardiac
4

Similar Publications

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

Radiation-induced skin injury (RSI) remains a significant clinical challenge due to persistent oxidative stress, chronic inflammation, and impaired tissue regeneration. It is demonstrated that RSI is accompanied by dysregulation of the immune microenvironment, wherein macrophages act as key regulators of all pathological cascades. Here, we developed a dual network hydrogel (Gel/SA@MXene) through dual cross-linking via UV irradiation and calcium ions to accelerate radiation-combined wound healing.

View Article and Find Full Text PDF

Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.

View Article and Find Full Text PDF

The calipash, a collagen-rich tissue in , undergoes structural degradation during infection, compromising its economic value. This study investigates the underlying collagen alterations. Turtles were challenged with , and samples were collected at 0 h, 6 h, 1d, 3d, 6d, and 10d post-infection.

View Article and Find Full Text PDF

Subcutaneous (SC) injection is the primary alternative to oral administration for therapeutic proteins and peptides. However, bioavailability and absorption rate are often variable and difficult to predict. Therefore, there is a need for new biorelevant and predictive SC in vitro methods.

View Article and Find Full Text PDF