Enhancing adoptive T cell immunotherapy with microRNA therapeutics.

Semin Immunol

Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA. Electronic address:

Published: February 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adoptive T cell-based immunotherapies can mediate complete and durable regressions in patients with advanced cancer, but current response rates remain inadequate. Maneuvers to improve the fitness and antitumor efficacy of transferred T cells have been under extensive exploration in the field. Small non-coding microRNAs have emerged as critical modulators of immune system homeostasis and T cell immunity. Here, we summarize recent advances in our understanding of the role of microRNAs in regulating T cell activation, differentiation, and function. We also discuss how microRNA therapeutics could be employed to fine-tune T cell receptor signaling and enhance T cell persistence and effector functions, paving the way for the next generation of adoptive immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862908PMC
http://dx.doi.org/10.1016/j.smim.2015.11.006DOI Listing

Publication Analysis

Top Keywords

microrna therapeutics
8
cell
5
enhancing adoptive
4
adoptive cell
4
cell immunotherapy
4
immunotherapy microrna
4
therapeutics adoptive
4
adoptive cell-based
4
cell-based immunotherapies
4
immunotherapies mediate
4

Similar Publications

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Introduction: Hepatocellular carcinoma (HCC) remains a major cause of cancer mortality, and effective therapeutic options are limited. MicroRNA‑372‑3p (miR‑372‑3p) has been implicated in HCC, yet its exact role is unclear.

Methods: We established miR‑372‑3p‑overexpressing HCC cell lines (HepG2, SNU‑449, JHH‑4) via lentiviral transduction.

View Article and Find Full Text PDF

Investigating the mechanism of gastrodin-regulated miR-128-3p in methamphetamine dependence via integrated pharmacology.

Medicine (Baltimore)

September 2025

Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.

Gastrodin (GAS), the principal bioactive component derived from Gastrodia elata Bl., has demonstrated efficacy in attenuating methamphetamine (MA) induced conditioned place preference (CPP) in animal models. However, the molecular mechanisms underlying its anti-addictive effects, particularly the role of miRNAs, remain insufficiently understood.

View Article and Find Full Text PDF

Dual role of mir-146a in non-small cell lung cancer progression: Molecular mechanisms and clinical potential.

Cell Signal

September 2025

Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Respiratory Immunology research center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address

Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality. 2.48 million new cases were reported globally in 2022, driven by rising adenocarcinoma rates linked to environmental factors such as air pollution.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are involved in the numerous types of tumors. The aim of this study is to comprehend the pathological mechanism of lncRNA CASC19 in ovarian cancer. CASC19, miR-761 and CBX2 expression in the samples was quantitatively detected by real-time quantitative polymerase chain reaction (RT-qPCR) reaction.

View Article and Find Full Text PDF