98%
921
2 minutes
20
The process of wound healing involves a complex network of signaling pathways working to promote rapid cell migration and wound closure. Activation of purinergic receptors by secreted nucleotides plays a major role in calcium mobilization and the subsequent calcium-dependent signaling that is essential for proper healing. The role of the purinergic receptor P2X7 in wound healing is still relatively unknown. We demonstrate that P2X7 expression increases at the leading edge of corneal epithelium after injury in an organ culture model, and that this change occurs despite an overall decrease in P2X7 expression throughout the epithelium. Inhibition of P2X7 prevents this change in localization after injury and impairs wound healing. In cell culture, P2X7 inhibition attenuates the amplitude and duration of injury-induced calcium mobilization in cells at the leading edge. Immunofluorescence analysis of scratch-wounded cells reveals that P2X7 inhibition results in an overall decrease in the number of focal adhesions along with a concentration of focal adhesions at the wound margin. Live cell imaging of green fluorescent protein-labeled actin and talin shows that P2X7 inhibition alters actin cytoskeletal rearrangements and focal adhesion dynamics after injury. Together, these data demonstrate that P2X7 plays a critical role in mediating calcium signaling and coordinating cytoskeletal rearrangement at the leading edge, both of which processes are early signaling events necessary for proper epithelial wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729273 | PMC |
http://dx.doi.org/10.1016/j.ajpath.2015.10.006 | DOI Listing |
Dig Dis Sci
September 2025
Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.
Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.
Clin Oral Investig
September 2025
Department of Innovative Technologies in Medicine & Dentistry, "G. D'Annunzio" University, Via Dei Vestini 31, Chieti, Italy.
Objectives: This study aimed to compare the efficacy of the full-thickness palatal graft technique (FTPGT) and the coronally advanced flap with subepithelial connective tissue graft (CAF + SCTG) in achieving complete root coverage (CRC) in single gingival recessions (GR).
Methods: Forty healthy patients with a single RT1 GR were randomized into two groups: 20 treated with CAF + SCTG and 20 with FTPGT. Baseline and 12-month measurements of GR, keratinized tissue width (KTW), probing depth (PD), clinical attachment level (CAL), and gingival thickness (GT) were recorded.
Arch Orthop Trauma Surg
September 2025
Orthopaedics and traumatology, Salzburger Landeskliniken, Salzburg, Austria.
Purpose: The NOM (non-operative management) of distal radius fractures (DRF) is influenced by various factors. This study seeks to determine whether poor fracture alignment correlates with poor outcome.
Methods: Over a period of three years, a study was conducted on conservatively treated DRF involving 127 patients, 104 women (81.
FASEB J
September 2025
Department of Plastic Surgery and Burn, Third XiangYa Hospital, Central South University, Changsha, Hunan, China.
Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.
View Article and Find Full Text PDFFEMS Microbiol Lett
September 2025
Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Arthrospira platensis (Spirulina) is one the highly valuable cyanobacteria in food and pharmaceutical industry. The intracellular and extracellular polysaccharide (PS) extracts of A. platensis have been exhibited different biological functions.
View Article and Find Full Text PDF