A KNIME-Based Analysis of the Zebrafish Photomotor Response Clusters the Phenotypes of 14 Classes of Neuroactive Molecules.

J Biomol Screen

Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium

Published: June 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, the photomotor response (PMR) of zebrafish embryos was reported as a robust behavior that is useful for high-throughput neuroactive drug discovery and mechanism prediction. Given the complexity of the PMR, there is a need for rapid and easy analysis of the behavioral data. In this study, we developed an automated analysis workflow using the KNIME Analytics Platform and made it freely accessible. This workflow allows us to simultaneously calculate a behavioral fingerprint for all analyzed compounds and to further process the data. Furthermore, to further characterize the potential of PMR for mechanism prediction, we performed PMR analysis of 767 neuroactive compounds covering 14 different receptor classes using the KNIME workflow. We observed a true positive rate of 25% and a false negative rate of 75% in our screening conditions. Among the true positives, all receptor classes were represented, thereby confirming the utility of the PMR assay to identify a broad range of neuroactive molecules. By hierarchical clustering of the behavioral fingerprints, different phenotypical clusters were observed that suggest the utility of PMR for mechanism prediction for adrenergics, dopaminergics, serotonergics, metabotropic glutamatergics, opioids, and ion channel ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087057115618348DOI Listing

Publication Analysis

Top Keywords

mechanism prediction
12
photomotor response
8
neuroactive molecules
8
pmr mechanism
8
receptor classes
8
utility pmr
8
pmr
6
knime-based analysis
4
analysis zebrafish
4
zebrafish photomotor
4

Similar Publications

LONP1 Variants Are Associated With Clinically Diverse Phenotypes.

Clin Genet

September 2025

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.

View Article and Find Full Text PDF

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.

View Article and Find Full Text PDF

Background: Identifying molecular alterations specific to advanced lung adenocarcinomas could provide insights into tumour progression and dissemination mechanisms.

Method: We analysed tumour samples, either from locoregional lesions or distant metastases, from patients with advanced lung adenocarcinoma from the SAFIR02-Lung trial by targeted sequencing of 45 cancer genes and comparative genomic hybridisation array and compared them to early tumours samples from The Cancer Genome Atlas.

Results: Differences in copy-number alterations frequencies suggest the involvement in tumour progression of LAMB3, TNN/KIAA0040/TNR, KRAS, DAB2, MYC, EPHA3 and VIPR2, and in metastatic dissemination of AREG, ZNF503, PAX8, MMP13, JAM3, and MTURN.

View Article and Find Full Text PDF

ABO blood group antigens influence host-microbe interactions and risk of early spontaneous preterm birth.

NPJ Biofilms Microbiomes

September 2025

Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.

The mechanisms by which vaginal microbiota shape spontaneous preterm birth (sPTB) risk remain poorly defined. Using electronic clinical records data from 74,913 maternities in conjunction with metaxanomic (n = 596) and immune profiling (n = 314) data, we show that the B blood group phenotype associates with increased risk of sPTB and adverse vaginal microbiota composition. The O blood group associates with sPTB in women who have a combination of a previous history of sPTB, an adverse vaginal microbial composition and pro-inflammatory cervicovaginal milieu.

View Article and Find Full Text PDF