DNA-Mediated Cellular Delivery of Functional Enzymes.

J Am Chem Soc

International Institute of Nanotechnology, ‡Department of Chemistry, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

Published: December 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report a strategy for creating a new class of protein transfection materials composed of a functional protein core chemically modified with a dense shell of oligonucleotides. These materials retain the native structure and catalytic ability of the hydrolytic enzyme β-galactosidase, which serves as the protein core, despite the functionalization of its surface with ∼25 DNA strands. The covalent attachment of a shell of oligonucleotides to the surface of β-galactosidase enhances its cellular uptake of by up to ∼280-fold and allows for the use of working concentrations as low as 100 pM enzyme. DNA-functionalized β-galactosidase retains its ability to catalyze the hydrolysis of β-glycosidic linkages once endocytosed, whereas equal concentrations of protein show little to no intracellular catalytic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831182PMC
http://dx.doi.org/10.1021/jacs.5b09711DOI Listing

Publication Analysis

Top Keywords

protein core
8
shell oligonucleotides
8
dna-mediated cellular
4
cellular delivery
4
delivery functional
4
functional enzymes
4
enzymes report
4
report strategy
4
strategy creating
4
creating class
4

Similar Publications

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

View Article and Find Full Text PDF

Bacteriophages are the most abundant entities on earth and exhibit vast genetic and phenotypic diversity. Exploitation of this largely unexplored molecular space requires identification and functional characterization of genes that act at the phage-host interface. So far, this has been restricted to few model phage-host systems that are amenable to genetic manipulation.

View Article and Find Full Text PDF

This study aimed to evaluate outcomes and resource utilization in neonates ≥35 weeks' gestation admitted to the neonatal intensive care unit (NICU) for persistent hypothermia, and to assess the incidence of early-onset sepsis (EOS) as well as the potential benefit of using the Kaiser Permanente EOS calculator for risk stratification.This retrospective study included 161 neonates born ≥35 weeks' gestation admitted to the NICU with persistent hypothermia (core temperature <36.5°C on three separate measurements) at a tertiary care hospital between April 2017 and June 2024.

View Article and Find Full Text PDF

Dynamic control of ciliary membrane protein content is crucial for the organelle's homeostasis and signaling function and involves removal of ciliary components by intraflagellar transport (IFT) and BBSome-mediated export, endocytic retrieval, and/or extracellular vesicle (EV) shedding. We report that the kinesin-3 motor KIF13B regulates ciliary protein composition and EV shedding in cultured kidney epithelial cells, with effects that vary over time. In early stages of ciliation, Kif13b cells aberrantly accumulate polycystin-2 (PC2) within cilia and release large EVs enriched with CCDC198 and the centriole distal appendage protein CCDC92, which also localizes to the ciliary tip.

View Article and Find Full Text PDF

Evaluation of the C protein of BVDV as a vaccine candidate: Immunoprotective studies in mice.

Vet Microbiol

September 2025

College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, PR China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Techno

Bovine Viral Diarrhea Virus (BVDV) is a major pathogen associated with calf diarrhea and reproductive disorders in cattle. This study evaluated the immune-protective potential of a subunit vaccine based on the capsid C protein of the BVDV HNL-1 strain. In mice model, the C protein subunit vaccine exhibits a favorable safety and elicits robust immune-protective efficacy comparable to commercial inactivated vaccines.

View Article and Find Full Text PDF