98%
921
2 minutes
20
This is a report of a human proteome project (HPP) related to chromosome 9 (Chr 9). To reveal missing proteins and undiscovered features in proteogenomes, both LC-MS/MS analysis and next-generation RNA sequencing (RNA-seq)-based identification and characterization were conducted on five pairs of lung adenocarcinoma tumors and adjacent nontumor tissues. Before our previous Chromosome-Centric Human Proteome Project (C-HPP) special issue, there were 170 remaining missing proteins on Chr 9 (neXtProt 2013.09.26 rel.); 133 remain at present (neXtProt 2015.04.28 rel.). In the proteomics study, we found two missing protein candidates that require follow-up work and one unrevealed protein across all chromosomes. RNA-seq analysis detected RNA expression for four nonsynonymous (NS) single nucleotide polymorphisms (SNPs) (in CDH17, HIST1H1T, SAPCD2, and ZNF695) and three synonymous SNPs (in CDH17, CST1, and HNF1A) in all five tumor tissues but not in any of the adjacent normal tissues. By constructing a cancer patient sample-specific protein database based on individual RNA-seq data and by searching the proteomics data from the same sample, we identified four missense mutations in four genes (LTF, HDLBP, TF, and HBD). Two of these mutations were found in tumor samples but not in paired normal tissues. In summary, our proteogenomic study of human primary lung tumor tissues detected additional and revealed novel missense mutations and synonymous SNP signatures, some of which are specific to lung cancers. Data from mass spectrometry have been deposited in the ProteomeXchange with the identifier PXD002523.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.5b00544 | DOI Listing |
Clin Exp Med
August 2025
Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Acute myeloid leukemia (AML) is a highly heterogeneous and aggressive hematologic malignancy characterized by clonal proliferation of myeloid precursors. Despite significant advancements in genomic profiling and targeted therapies, patient outcomes remain suboptimal due to disease complexity, resistance mechanisms, and high relapse rates. The integration of multi-omics approaches-spanning genomics, epigenomics, transcriptomics, proteomics, and metabolomics-has revolutionized AML research, offering a comprehensive understanding of leukemogenesis, tumor heterogeneity, and therapeutic vulnerabilities.
View Article and Find Full Text PDFCommun Biol
August 2025
Centre for Global Health Research, Usher Institute, University of Edinburgh, 5-7 Little France Road, Edinburgh, UK.
Understanding the genomic basis of human proteomic variability provides powerful tools to probe potential causal relationships of proteins and disease risk, and thus to prioritise candidate drug targets. Here, we investigated 6432 plasma proteins (1533 previously unstudied in large-scale proteomic GWAS) using the SomaLogic (v4.1) aptamer-based technology in a Scottish population from the Viking Genes study.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
August 2025
Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada; Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada; Akademia Śląska, Katowice, Poland; Children Hospital Research Institut
This special volume of Biochimica et Biophysica Acta - Molecular Basis of Disease showcases a transformative era in biomedical research, driven by the convergence of multi-omics technologies, artificial intelligence (AI), and systems biology. The volume is focused across eight thematic sections-spanning cancer, inflammatory and infectious diseases, neurodegeneration, cardiovascular health, autophagy, respiratory disease, and heme biology-this volume highlights how integrative methodologies are helping to simplify the complexity of disease mechanisms. These studies discuss not only biomarker discovery and disease mechanisms, but also how redox biology, lipidomics, machine learning, and proteogenomics are redefining pathophysiological frameworks.
View Article and Find Full Text PDFSci Transl Med
August 2025
Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.
Neurofibromin/NF1 is a RAS (rat sarcoma virus) GTPase-activating protein and estrogen receptor (ER) transcriptional corepressor. NF1 status, identified by copy number loss or low mRNA/protein expression, is associated with endocrine therapy resistance in ~20% of ER/HER2 (human epidermal growth factor receptor 2) early-stage breast cancers. The identification of targeted treatments for NF1 ER/HER2 breast cancer is therefore a priority.
View Article and Find Full Text PDFProteomes
August 2025
Department of Patient-Derived Cancer Model, Tochigi Cancer Center Research Institute, 4-9-13 Yohnan, Utsunomiya 320-0834, Tochigi, Japan.
Background: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide, with a multifactorial etiology involving genetic and environmental factors. Advanced proteomics offers valuable insights into the molecular mechanisms of cancer, identifying proteins that function as mediators in tumor biology.
Methods: In this study, we used mass spectrometry-based data-independent acquisition (DIA) to analyze the proteomic landscape of CRC.