Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606077PMC
http://dx.doi.org/10.1155/2015/746017DOI Listing

Publication Analysis

Top Keywords

wind turbines
16
differential evolution
12
reactive power
12
power grid
12
doubly fed
8
fed induction
8
supply reactive
8
paper introduces
8
controller module
8
employing differential
8

Similar Publications

Transcriptome Analysis Reveals the Mechanism of Early Branching of Balsa (Ochroma lagopus Swartz).

Physiol Plant

September 2025

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.

Balsa (Ochroma lagopus Swartz), the world's lightest wood and a crucial material in wind turbine blades, holds significant potential to contribute to carbon neutrality efforts when cultivated in tropical areas such as Xishuangbanna, China. However, balsa trees planted in Xishuangbanna exhibit early branching, resulting in reduced wood yield. Our study investigated the pivotal factors in regulating shoot apical dominance and branching by comparing an early-branching cultivar from Indonesia with a late-branching cultivar from Ecuador.

View Article and Find Full Text PDF

Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency, this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore, hybrid storage systems have been used to evaluate their viability and cost-benefits.

View Article and Find Full Text PDF

In engineering structure performance monitoring, capturing real-time on-site data and conducting precise analysis are critical for assessing structural condition and safety. However, equipment instability and complex on-site environments often lead to data anomalies and gaps, hindering accurate performance evaluation. This study, conducted within a wind farm reinforcement project in Shandong Province, addresses these challenges by focusing on anomaly detection and data imputation for weld nail strain, anchor cable axial force, and concrete strain.

View Article and Find Full Text PDF

Objective: To evaluate the effectiveness and acceptability of ventilation interventions in naturally ventilated hospitals in Liberia.

Design: Difference-in-differences analysis of pre- and post-air changes per hour of intervention and control spaces.

Setting: Hospitals in Bong and Montserrado Counties, Liberia.

View Article and Find Full Text PDF

This study investigates the application of triboelectric separation technology for the efficient recovery of glass fibre-reinforced polymers (GFRPs) from wind turbine blade. Through systematic experiments, the effects of friction materials, electrode voltage and feed rate on separation efficiency were evaluated. The results demonstrate that using polymethyl methacrylate as the friction material, with an electrode voltage of 12.

View Article and Find Full Text PDF