98%
921
2 minutes
20
Purpose: Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested.
Methods: The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model.
Results: The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text].
Conclusions: The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-015-1296-9 | DOI Listing |
BMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
Acta Ortop Mex
September 2025
Universidade de Ribeirão Preto Campus Guarujá. Guarujá-SP, Brazil.
Talus is the second largest bone in the posterior region of the foot and participates in the talocrural (ankle), subtalar, and talonavicular joints. Talar fractures account for only one percent of all feet and ankle fractures, being the fracture of the medial tubercle of the posterior process of the talus an uncommon injury, caused by the rupture of the posterior talotibial ligament after dorsiflexion and traumatic pronation. Such fractures may not be radiographically evident, as described in this rare case of fracture of the medial tubercle of the posterior process of the talus with a satisfactory outcome without the need for surgical treatment.
View Article and Find Full Text PDFActa Ortop Mex
September 2025
Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario-Malvarrosa. Valencia, España.
Introduction: subtalar dislocations, typical of high-energy trauma, are classified as medial, lateral, anterior or posterior depending on the deviation of the foot in relation to the talus. Lateral dislocation accounts for 17% of the total and has a worse prognosis. Immediate reduction is required to reduce the risk of sequelae, the incidence of which is around 90%.
View Article and Find Full Text PDFActa Ortop Mex
September 2025
Universidad de Manizales. Colombia.
Articular tuberculosis is a rare condition, with extrapulmonary presentations most commonly appearing in joints such as the hip or knee. It is usually associated with conditions like immunosuppression or a history of pulmonary tuberculosis. Diagnosis involves imaging or pathology, and treatment typically involves surgical intervention along with medication.
View Article and Find Full Text PDFUnfallchirurgie (Heidelb)
September 2025
Klinik für Unfall‑, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude W1, 48149, Münster, Deutschland.
The bony consolidation of fractures depends on various factors. Under optimal conditions fracture healing takes place within a few weeks. An essential requirement for fracture healing is the restoration of adequate biomechanical stability with an interfragmentary movement which is as ideal as possible.
View Article and Find Full Text PDF