Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rare variants in the phospholipase D3 gene (PLD3) were associated with increased risk for late-onset Alzheimer disease (LOAD). We identified a missense mutation in PLD3 in whole-genome sequence data of a patient with autopsy confirmed Alzheimer disease (AD) and onset age of 50 years. Subsequently, we sequenced PLD3 in a Belgian early-onset Alzheimer disease (EOAD) patient (N = 261) and control (N = 319) cohort, as well as in European EOAD patients (N = 946) and control individuals (N = 1,209) ascertained in different European countries. Overall, we identified 22 rare variants with a minor allele frequency <1%, 20 missense and two splicing mutations. Burden analysis did not provide significant evidence for an enrichment of rare PLD3 variants in EOAD patients in any of the patient/control cohorts. Also, meta-analysis of the PLD3 data, including a published dataset of a German EOAD cohort, was not significant (P = 0.43; OR = 1.53, 95% CI 0.60-3.31). Consequently, our data do not support a role for PLD3 rare variants in the genetic etiology of EOAD in European EOAD patients. Our data corroborate the negative replication data obtained in LOAD studies and therefore a genetic role of PLD3 in AD remains to be demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5057316PMC
http://dx.doi.org/10.1002/humu.22908DOI Listing

Publication Analysis

Top Keywords

alzheimer disease
16
rare variants
12
early-onset alzheimer
8
pld3
4
variants pld3
4
pld3 affect
4
affect risk
4
risk early-onset
4
alzheimer
4
disease
4

Similar Publications

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.

Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.

Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.

View Article and Find Full Text PDF

Exploring LRP-1 in the liver-brain axis: implications for Alzheimer's disease.

Mol Biol Rep

September 2025

Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.

Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.

View Article and Find Full Text PDF

Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.

View Article and Find Full Text PDF

Photostimulation of locus coeruleus CA1 catecholaminergic terminals reversed Spatial memory impairment in an alzheimer's disease mouse model.

Psychopharmacology (Berl)

September 2025

División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.

Rationale: One of the earliest changes associated with Alzheimer's disease (AD) is the loss of catecholaminergic terminals in the cortex and hippocampus originating from the Locus Coeruleus (LC). This decline leads to reduced catecholaminergic neurotransmitters in the hippocampus, affecting synaptic plasticity and spatial memory. However, it is unclear whether restoring catecholaminergic transmission in the terminals from the LC may alleviate the spatial memory deficits associated with AD.

View Article and Find Full Text PDF