Stem Cell Therapy: Current Applications and Potential for Urology.

Curr Urol Rep

3-002E Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada, T6G 2E1.

Published: November 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stem cell therapy holds the potential to revolutionize the treatment of a number of chronic conditions. Stem cells ability to home in on injured sites of the body, stimulate angiogenesis, tissue regeneration, immunomodulation, anti-inflammatory, and anti-fibrotic factors have attracted their use in the treatment of many conditions. Urology has registered one of the highest experimental successes using stem cell therapy. However, the rate of clinical applications is comparatively lower. This review takes a look at our efforts so far and what needs to be done in order to maximize the clinical benefit we can derive from stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11934-015-0551-5DOI Listing

Publication Analysis

Top Keywords

stem cell
12
cell therapy
12
stem cells
8
stem
5
therapy current
4
current applications
4
applications potential
4
potential urology
4
urology stem
4
therapy holds
4

Similar Publications

CRISPR/Cas9-mediated editing of COQ4 in induced pluripotent stem cells: A model for investigating COQ4-associated human coenzyme Q deficiency.

Stem Cell Res

September 2025

Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:

Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.

View Article and Find Full Text PDF

Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.

View Article and Find Full Text PDF

The journal retracts the article titled "Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A Receptor Ligands" [...

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.

View Article and Find Full Text PDF