98%
921
2 minutes
20
A few yeasts, including Hansenula polymorpha are able to assimilate nitrate and use it as nitrogen source. The genes necessary for nitrate assimilation are organised in this organism as a cluster comprising those encoding nitrate reductase (YNR1), nitrite reductase (YNI1), a high affinity transporter (YNT1), as well as the two pathway specific Zn(II)2Cys2 transcriptional activators (YNA1, YNA2). Yna1p and Yna2p mediate induction of the system and here we show that their functions are interdependent. Yna1p activates YNA2 as well as its own (YNA1) transcription thus forming a nitrate-dependent autoactivation loop. Using a split-YFP approach we demonstrate here that Yna1p and Yna2p form a heterodimer independently of the inducer and despite both Yna1p and Yna2p can occupy the target promoter as mono- or homodimer individually, these proteins are transcriptionally incompetent. Subsequently, the transcription factors target genes containing a conserved DNA motif (termed nitrate-UAS) determined in this work by in vitro and in vivo protein-DNA interaction studies. These events lead to a rearrangement of the chromatin landscape on the target promoters and are associated with the onset of transcription of these target genes. In contrast to other fungi and plants, in which nuclear accumulation of the pathway-specific transcription factors only occur in the presence of nitrate, Yna1p and Yna2p are constitutively nuclear in H. polymorpha. Yna2p is needed for this nuclear accumulation and Yna1p is incapable of strictly positioning in the nucleus without Yna2p. In vivo DNA footprinting and ChIP analyses revealed that the permanently nuclear Yna1p/Yna2p heterodimer only binds to the nitrate-UAS when the inducer is present. The nitrate-dependent up-regulation of one partner protein in the heterodimeric complex is functionally similar to the nitrate-dependent activation of nuclear accumulation in other systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559421 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135416 | PLOS |
Genes Dev
September 2025
Department of Biological Sciences, Columbia University, New York, New York 10027, USA;
Enhancer RNAs (eRNAs) are transcribed by during enhancer activation but are typically rapidly degraded in the nucleus. During states of reduced RNA surveillance, however, eRNAs and other similar "noncoding" RNAs (including, e.g.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Sorbonne Université, Laboratoire de physique nucléaire et des hautes énergies (LPNHE), Université Paris Cité, CNRS/IN2P3, Paris, France.
We report on a search for sub-GeV dark matter (DM) particles interacting with electrons using the DAMIC-M prototype detector at the Modane Underground Laboratory. The data feature a significantly lower detector single e^{-} rate (factor 50) compared to our previous search, while also accumulating a 10 times larger exposure of ∼1.3 kg-day.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.
Unlabelled: Oropouche fever is a debilitating disease caused by Oropouche virus (OROV), an arthropod-borne member of the Peribunyaviridae family. Despite its public health significance, the molecular mechanisms driving OROV pathogenesis remain poorly understood. In other bunyaviruses, the nonstructural NSs protein encoded by the small (S) genome segment acts as a major virulence factor.
View Article and Find Full Text PDFFEBS Open Bio
September 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
Hyperlipidemia is a common chronic disease characterized by elevated levels of lipids in the blood. There is some evidence that suggests that berberine (BBR) might be beneficial for the treatment of hyperlipidemia. However, its low intestinal bioavailability limits its potential therapeutic action.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.
View Article and Find Full Text PDF