The abiogenesis of complex peptides is a yet unsolved problem concerning the origin of life, as it is unclear how specific amino acid sequences could be formed in the absence of a regulation mechanism. Crystalline minerals could have provided template scaffolds to sustain replicable oligomerization processes. We demonstrate that the natural organophilic borate colemanite, CaBO(OH)·HO, fosters consistent Gly-Ala oligomerization into AG, GAG and GGA strands with well-defined primary sequence (8%, 47% and 45% respectively) from activated glycine and alanine as N-carboxyanhydrides.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
The main proteases M are a group of highly conserved cysteine hydrolases in β-coronaviruses. They have been demonstrated to play an unavoidable role in viral replication, and consequently they have been suggested as key targets for treating coronavirus-caused infectious diseases, mainly from the COVID-19 epidemic. Since the most functional form for M enzymatic activity is associated to its homodimer, compounds inhibiting dimerization should also inhibit catalytic activity.
View Article and Find Full Text PDFAim: The objective of this in vitro study was to compare reused and sterilized versus new healing abutments to assess whether a decontamination and sterilization process performed on resued healing abutments was sufficient to remove residual proteins. The two groups were comparable with respect to patient safety.
Materials And Methods: During the period from September 2022 to October 2023, healing abutment screws were selected and divided into two groups according to whether they were new or previously used in patients.
The main protease (Mpro or 3CLpro) is an enzyme that is evolutionarily conserved among different genera of coronaviruses. As it is essential for processing and maturing viral polyproteins, Mpro has been identified as a promising target for the development of broad-spectrum drugs against coronaviruses. Like SARS-CoV and MERS-CoV, the mature and active form of SARS-CoV-2 Mpro is a dimer composed of identical subunits, each with a single active site.
View Article and Find Full Text PDFAlthough much progress has been made in the study of cell wall biosynthetic genes in the model filamentous fungus Aspergillus nidulans, there are still targets awaiting characterization. An example is the gene celA (ANIA_08444) encoding a putative mixed linkage glucan synthase. To characterize the role of celA, we deleted it in A.
View Article and Find Full Text PDFWD40 repeat (WDR) proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD).
View Article and Find Full Text PDFA few yeasts, including Hansenula polymorpha are able to assimilate nitrate and use it as nitrogen source. The genes necessary for nitrate assimilation are organised in this organism as a cluster comprising those encoding nitrate reductase (YNR1), nitrite reductase (YNI1), a high affinity transporter (YNT1), as well as the two pathway specific Zn(II)2Cys2 transcriptional activators (YNA1, YNA2). Yna1p and Yna2p mediate induction of the system and here we show that their functions are interdependent.
View Article and Find Full Text PDFThe assimilation of nitrate, a most important soil nitrogen source, is tightly regulated in microorganisms and plants. In Aspergillus nidulans, during the transcriptional activation process of nitrate assimilatory genes, the interaction between the pathway-specific transcription factor NirA and the exportin KapK/CRM1 is disrupted, and this leads to rapid nuclear accumulation and transcriptional activity of NirA. In this work by mass spectrometry, we found that in the absence of nitrate, when NirA is inactive and predominantly cytosolic, methionine 169 in the nuclear export sequence (NES) is oxidized to methionine sulfoxide (Metox169).
View Article and Find Full Text PDFThe fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes' expression.
View Article and Find Full Text PDFExtracellular superoxide dismutase (SOD3) is the primary enzymatic antioxidant defence of the vascular wall. The physiopathological role of SOD3 has been examined in vascular-related diseases, atherosclerosis, hypertension, diabetes, ischaemia-reperfusion injury, lung disease, various inflammatory conditions, and neurological diseases. An important single nucleotide polymorphism (SNP), nt.
View Article and Find Full Text PDF