ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing.

J Biol Chem

From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 2S8, Canada, Departments of Medicine (Neurology) and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada, and.

Published: October 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ATP-binding cassette transporter A7 (ABCA7) has been identified as a susceptibility factor of late onset Alzheimer disease in genome-wide association studies. ABCA7 has been shown to mediate phagocytosis and affect membrane trafficking. The current study examined the impact of ABCA7 loss of function on amyloid precursor protein (APP) processing and generation of amyloid-β (Aβ). Suppression of endogenous ABCA7 in several different cell lines resulted in increased β-secretase cleavage and elevated Aβ. ABCA7 knock-out mice displayed an increased production of endogenous murine amyloid Aβ42 species. Crossing ABCA7-deficient animals to an APP transgenic model resulted in significant increases in the soluble Aβ as compared with mice expressing normal levels of ABCA7. Only modest changes in the amount of insoluble Aβ and amyloid plaque densities were observed once the amyloid pathology was well developed, whereas Aβ deposition was enhanced in younger animals. In vitro studies indicated a more rapid endocytosis of APP in ABCA7 knock-out cells that is mechanistically consistent with the increased Aβ production. These in vitro and in vivo findings indicate a direct role of ABCA7 in amyloid processing that may be associated with its primary biological function to regulate endocytic pathways. Several potential loss-of-function ABCA7 mutations and deletions linked to Alzheimer disease that in some instances have a greater impact than apoE allelic variants have recently been identified. A reduction in ABCA7 expression or loss of function would be predicted to increase amyloid production and that may be a contributing factor in the associated Alzheimer disease susceptibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591804PMC
http://dx.doi.org/10.1074/jbc.M115.655076DOI Listing

Publication Analysis

Top Keywords

loss function
12
alzheimer disease
12
abca7
11
atp-binding cassette
8
cassette transporter
8
transporter abca7
8
abca7 loss
8
amyloid processing
8
abca7 knock-out
8
amyloid
7

Similar Publications

Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.

View Article and Find Full Text PDF

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF

X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Spiking neural networks (SNNs) inherently rely on the timing of signals for representing and processing information. Augmenting SNNs with trainable transmission delays, alongside synaptic weights, has recently shown to increase their accuracy and parameter efficiency. However, existing training methods to optimize such networks rely on discrete time, approximate gradients, and full access to internal variables such as membrane potentials.

View Article and Find Full Text PDF