98%
921
2 minutes
20
The current trend with integrated energy-storage units in portable electronics lies in continuous advancements in nanostructured materials, thin-film manufacture technologies, and device architectures with enhanced functionality and reliability of existing components. Despite this, it is still challenging to provide cost-efficient solution to further improve the energy and power densities and cyclability of supercapacitors (SCs), especially at ultrafast rates while maintaining their environmentally friendly and even well-run at arbitrary harsh environments character. In this contribution, we report the fabrication of quasi-aligned single crystalline 3C-SiC nanowire (3C-SiCNW) array with tailored shapes and nitrogen-doping (N-doping). The resultant large-scale SiCNWs were directly grown on the surface of a flexible carbon fabric via a simple chemical vapor deposition method. We found that the SC performance of SiCNW arrays can be substantially enhanced by nitrogen doping, which could favor a more localized impurity state near the conduction band edge that greatly improves the quantum capacitance and hence increases the bulk capacitance and the high-power capability. The measured areal capacitances are higher with values of 4.8 and 4.7 mF cm(-2), in aqueous and gel electrolytes, respectively. The all-solid-state flexible textile-based SCs (TSCs) made with these electrodes are mechanically robust under bent and twisted states. Further, they show a power density of 72.3 mW cm(-2) that is higher than that of electrolytic capacitors, and an energy density of 1.2 × 10(-4) mW·h cm(-2), in association with superior rate ability, cyclability, and being environmentally friendly. Such SiCNW-TSC devices allow for operations at ultrahigh rate up to 30 V s(-1), 2 orders of magnitude higher than that of conventional supercapacitors. All these data are comparable to the reported results for 1D nanostructure-based carbon nanotubes (CNTs) or graphenes, thus showing the promising application as large-area flexible textile electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5b01784 | DOI Listing |
Chem Commun (Camb)
September 2025
Inorganic Chemistry I Institute, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany.
Herein, we report a solid-state polycyclotrimerization of 1,4-diethynylbenzene using mechanochemical activation in a ball mill, yielding a highly porous and hydrophobic hyperbranched polymer (HBP) with a specific surface area of up to 570 m g. The reaction, catalyzed by Fe(hmds) and conducted under solvent-free conditions, was optimized by varying milling time and frequency. This method enables the efficient synthesis of insoluble, porous organic polymers with high yields (up to 95%) and offers an environmentally friendly alternative to traditional solution-based polymerizations.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Nanotechnology Lab, Research Laboratories of Saigon Hi-Tech Park, Lot I3, N2 Street, Tang Nhon Phu Ward, Ho Chi Minh City 70000, Vietnam.
Silver nanoprisms (AgNPrs) are promising candidates for surface-enhanced Raman scattering (SERS) due to their strong localized surface plasmon resonance and sharp tip geometry. In this study, AgNPrs were synthesized through a photochemical method by irradiating spherical silver nanoparticle seeds with 10 W green light-emitting diodes (LEDs; 520 ± 20 nm) for various periods of time up to 72 h. The growth mechanism was investigated through ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy analyses, confirming the gradual transformation of spherical seeds into AgNPrs.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.
This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemical Engineering and Green Technology, Institute of Chemical Technology (ICT) Mumbai Maharashtra 400019 India
The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.
View Article and Find Full Text PDFFront Psychol
August 2025
Department of Work and Social Psychology, Fontys University of Applied Sciences, Eindhoven, Netherlands.
Background: Psychosocial disability (PSD) refers to the limitations experienced by persons with mental illness (PWMI) in interacting with their social environment. Persons with psychosocial disabilities (PPSD) face significant barriers to accessing sexual and reproductive health (SRH) services due to structural and institutional barriers. Despite commitments under the Convention on the Rights of Persons with Disabilities (CRPD), there are persistent rights violations and denial of PPSD to exercise their rights and access services related to SRH care.
View Article and Find Full Text PDF