98%
921
2 minutes
20
The gut microbiota is important in the pathogenesis of energy-metabolism related diseases. We focused on the interaction between intestinal bacteria and orally administered chemical drugs. Oral administration of berberine (BBR) effectively treats patients with metabolic disorders. However, because BBR exhibits poor solubility, its absorption mechanism remains unknown. Here, we show that the gut microbiota converts BBR into its absorbable form of dihydroberberine (dhBBR), which has an intestinal absorption rate 5-fold that of BBR in animals. The reduction of BBR to dhBBR was performed by nitroreductases of the gut microbiota. DhBBR was unstable in solution and reverted to BBR in intestine tissues via oxidization. Heat inactivation of intestinal homogenate did not inhibit dhBBR oxidization, suggesting the process a non-enzymatic reaction. The diminution of intestinal bacteria via orally treating KK-Ay mice with antibiotics decreased the BBR-to-dhBBR conversion and blood BBR; accordingly, the lipid- and glucose-lowering efficacy of BBR was reduced. Conclusively, the gut microbiota reduces BBR into its absorbable form of dhBBR, which then oxidizes back to BBR after absorption in intestine tissues and enters the blood. Thus, interaction(s) between the gut microbiota and orally administrated drugs may modify the structure and function of chemicals and be important in drug investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502414 | PMC |
http://dx.doi.org/10.1038/srep12155 | DOI Listing |
J Fish Dis
September 2025
Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong
Vibrio infections cause enteritis in grouper fish, leading to high mortality and stunted growth, which is a major challenge for aquaculture. Oligochitosans, marine prebiotics with bioactive properties, have proven their potential for growth promotion and immune regulation. However, the impacts of Vibrio harveyi on the gut microbiome of grouper fish and the potential of oligochitosans to modulate these effects remain poorly understood.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.
Objectives: Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.
View Article and Find Full Text PDFAPMIS
September 2025
Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India.
Kefir grains offer numerous health benefits, including boosting the immune system, alleviating digestive issues, and enhancing antimicrobial activity. They are rich in beneficial probiotic bacteria that promote gut health and support a balanced intestinal microbiota. "Beta-lactoglobulin (β-lg), a well-known milk protein," is used to create nanofibril structures that can serve as scaffolds.
View Article and Find Full Text PDFJ Obes Metab Syndr
September 2025
Center of Excellence in Digestive diseases and Gastroenterology Unit, Department of Medicine, Thammasat University, Pathumthani, Thailand.
Background: The gut microbiota plays a vital role in various physiological processes, including metabolism. Fecal microbiota transplantation (FMT) involves transferring fecal matter from a healthy donor to rebalance a patient's intestinal dysbiosis. The impact of FMT on metabolic syndrome (MetS) is subject to debate.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030000, China.
Atherosclerosis (AS) is increasingly recognized as a disease influenced not only by lipid metabolism and inflammation but also by the gut microbiota and their bioactive metabolites. Isoquercitrin (ISO), a natural flavonoid with food-medicine homology, has shown promising antiatherosclerotic potential, yet its underlying mechanisms remain unclear. In this study, ISO administration significantly reduced plaque burden, improved lipid profiles, and restored gut microbial balance by enriching beneficial taxa, such as , , and .
View Article and Find Full Text PDF