98%
921
2 minutes
20
In order to explore input pathways and pollution characteristics of Cd contamination in paddy soil in Youxian, Hunan Province, Cd contents in paddy soils, sediments of irrigation canals, typical mineral and industrial products such as coal, gangue and cement were analyzed. It was suggested that the average contents of Cd both in surface paddy soil and the corresponding natural soil were higher than the soil quality standard 0.3 mg x kg(-1). Cd contents in gangue and cement were similar as those in the corresponding natural soils. The atmosphere deposition of Cd was the highest in factory area. The profiles of Cd in 0-100 cm paddy soil and 0-40 cm in natural soils varied significantly from the upper to the lower layer. Cd contents in 0-40 cm layer in paddy soil were much higher than those in corresponding natural soils in mineral and mineral-factory areas. The potentiality for downward movement of Cd in soils in mineral area was the highest among the three studied areas. It suggested Cd contents in surface paddy soil were higher in upwind areas than those in downwind areas in mineral-factory and factory areas. It could be concluded that the main input pathways of Cd in mineral and mineral-factory. areas were from irrigation water, while contribution of atmosphere deposition in mineral-factory and factory areas was also very significant.
Download full-text PDF |
Source |
---|
J Hazard Mater
September 2025
State Key Laboratory of Regional and Urban Ecology, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation
Reactive oxygen species (ROS) are critical mediators of soil biogeochemical processes. While the production of ROS with biochar (BC) in the rhizosphere has not been explored. We demonstrate that BC and Fe-modified biochar (FeBC), prepared at 400°C and 600°C, influence ROS generation in paddy soil containing biodegradable (polybutylene succinate: PBS) and conventional (polystyrene) microplastics (MPs).
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; State Key Laboratory of Green and Efficient Development of
Microplastics (MPs) have been shown to enhance nitrous oxide (NO) emissions and soil salinization potentially amplifying this effect. This study investigated the individual and combined impacts of polyethylene (PE) MPs and salinity on NO emissions from paddy soils, while simultaneously analyzing related microbial parameters. MPs significantly increased cumulative NO emissions by 9.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St. Machar Drive., Aberdeen, AB24 3UU, UK.
Integration of diverse fertilisation strategies with water-saving irrigation techniques presents a promising sustainable agricultural practice, offering the potential to reduce greenhouse gases (GHGs) emissions, enhance carbon sequestration and boost crop yields. However, existing research on the influence of soil microorganisms on biogeochemical processes of GHGs is limited. Herein, we explored the microbial mechanisms influencing GHGs emissions through a 3-year field experiment and metagenomic sequencing conducted in southeastern China.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China. Electronic address:
Environmental remediation strategies for cadmium (Cd)-contaminated rice paddies often face challenges due to reliance on time-consuming field trials and limited pre-assessment of intervention efficacy. Here, we propose a machine learning and causal inference-integrated framework to enable proactive decision-making, using iron plaque-mediated Cd immobilization as a model system. By analyzing 76 paired soil-rice samples, extreme gradient boosting (XGBoost) and SHapley Additive exPlanations (SHAP) identified six critical drivers of grain Cd accumulation from 31 physicochemical and microbial indicators.
View Article and Find Full Text PDFJ Environ Manage
August 2025
Hubei Provincial Engineering Research Center of Non-Point Source Pollution Control, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Acade
Accurate and high-frequency monitoring of methane (CH) from rice paddies is crucial for effective carbon emission control but remains challenging due to fluctuant emissions and complex field environments. This study proposed a new in-situ high-frequency CH4 measurement method based on machine learning and sensor-measurable water-soil-air environment factors. The results show that: (1) soil and paddy water serve as critical media influencing CH production and transportation, with paddy water depth (H), soil electrical conductivity (EC), and soil temperature (T) being significantly positively correlated with CH emission flux, while soil redox potential (Eh) had a negative effect (p < 0.
View Article and Find Full Text PDF