98%
921
2 minutes
20
Background: Cachexia and muscle atrophy are common consequences of cancer and chemotherapy administration. The novel hormone ghrelin has been proposed as a treatment for this condition. Increases in food intake and direct effects on muscle proteolysis and protein synthesis are likely to mediate these effects, but the pathways leading to these events are not well understood.
Methods: We characterized molecular pathways involved in muscle atrophy induced by Lewis lung carcinoma (LLC) tumour implantation in c57/bl6 adult male mice and by administration of the chemotherapeutic agent cisplatin in mice and in C2C12 myotubes. The effects of exogenous ghrelin administration and its mechanisms of action were examined in these settings.
Results: Tumour implantation and cisplatin induced muscle atrophy by activating pro-inflammatory cytokines, p38-C/EBP-β, and myostatin, and by down-regulating Akt, myoD, and myogenin, leading to activation of ubiquitin-proteasome-mediated proteolysis and muscle weakness. Tumour implantation also increased mortality. In vitro, cisplatin up-regulated myostatin and atrogin-1 by activating C/EBP-β and FoxO1/3. Ghrelin prevented these changes in vivo and in vitro, significantly increasing muscle mass (P < 0.05 for LLC and P < 0.01 for cisplatin models) and grip strength (P = 0.038 for LLC and P = 0.001 for cisplatin models) and improving survival (P = 0.021 for LLC model).
Conclusion: Ghrelin prevents muscle atrophy by down-regulating inflammation, p38/C/EBP-β/myostatin, and activating Akt, myogenin, and myoD. These changes appear, at least in part, to target muscle cells directly. Ghrelin administration in this setting is associated with improved muscle strength and survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458079 | PMC |
http://dx.doi.org/10.1002/jcsm.12023 | DOI Listing |
Arq Gastroenterol
September 2025
Department of GI Surgery, HPB and Liver Transplantation, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
Background: Pancreaticoduodenectomy (PD) is a complex procedure with significant postoperative morbidity. Associated sarcopenia could be a potential risk for increased post-operative complications.
Methods: Patients who had undergone pancreaticoduodenectomy bet-ween July 2019 to December 2020 were included in the study.
Am J Physiol Cell Physiol
September 2025
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC.
Cachexia, the loss of skeletal muscle mass and function with cancer, contributes to reduced life quality and worsened survival. Skeletal muscle fibrosis leads to disproportionate muscle weakness; however, the role of infiltrating immune cells and fibro-adipogenic progenitors (FAPs) in cancer-induced muscle fibrosis is not well understood. Using the C26 model of cancer cachexia, we sought to examine the changes to skeletal muscle immune cells and FAPs which contribute to excessive extracellular matrix (ECM) collagen deposition.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
October 2025
Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.
Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.
Clin Interv Aging
September 2025
Department for Orthopedics, Traumatology and Plastic Surgery, University Hospital, Leipzig, Germany.
Study Design: Systematic review.
Purpose: As the number of elderly increases, age-related changes of body composition like osteoporosis and sarcopenic muscle changes contribute to higher morbidity, less quality of life and higher health care costs. Data on the effect of muscle atrophy on osteoporotic vertebral fractures is limited.
EMBO Mol Med
September 2025
Department of Neurology, Columbia University, New York, NY, 10032, USA.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.
View Article and Find Full Text PDF