Monitoring of bisphenols in canned tuna from Italian markets.

Food Chem Toxicol

Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, I-00136 Rome, Italy; Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, I-80131 Naples, Italy.

Published: September 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Monitoring of food contamination from bisphenols is a necessary process for the consumers' risk assessment. A method for the quali-quantitative analysis of Bisphenol A (BPA), Bisphenol B (BPB), Bisphenol A Diglycidyl Ether (BADGE), and Bisphenol F Diglycidyl Ether (BFDGE), by liquid chromatography with fluorescence detection (LC-FD), was performed and validated for their determination in 33 samples of tuna fish, canned in either oil or aqueous medium. Samples were collected in Italian markets. Tuna and the correspondent preservation medium were analyzed separately. Detected levels of bisphenols ranged from 19.1 to 187.0 ng/g in tuna matrix and from 6.3 to 66.9 ng/mL in oil medium. No bisphenols were found in aqueous medium. At least one of the analytes was found in 83% of the tuna samples in oil medium, whereas tuna samples in aqueous medium showed BPA alone in 67% of samples. 21% of the oil medium samples resulted positive for at least one bisphenol. On the basis of measured concentrations and general daily ingestion rate of canned tuna fish, the probable daily intake of BPA for Italian population was calculated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2015.05.010DOI Listing

Publication Analysis

Top Keywords

aqueous medium
12
oil medium
12
canned tuna
8
italian markets
8
bisphenol diglycidyl
8
diglycidyl ether
8
tuna fish
8
medium samples
8
tuna samples
8
tuna
7

Similar Publications

Nitric oxide (NO) is one of the crucial biological signaling molecules, yet achieving its selective and spatiotemporal detection in in-situ/invitro or biological systems at specific pH remains a significant challenge. Hence, a probe capable of directly detecting NO would be immensely valuable in understanding its reactivity and biological functions. Here, to develop a Cu(II)-based probe for selective NO detection, we synthesized a Cu(II)-complex (1) using a N3-tridentate ligand having a pendant dansyl fluorophore (L) and evaluated it's NO reactivity under varying pH conditions.

View Article and Find Full Text PDF

Photochemical behavior of colloidal lignin particles under controlled UV exposure: Balancing self-stabilization and degradation.

Int J Biol Macromol

September 2025

"Materials + Technologies" Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain. Electronic address:

Colloidal Lignin Particles (CLPs), with their polyphenolic structure, are promising sustainable alternatives to chemical UV filters. This study investigates the photochemical behavior of CLPs under ultraviolet irradiation synthetized from five different technical raw lignins (Alkali, Organosolv, two Enzymatic Hydrolyzed and Softwood Kraft Lignin) via solvent-shift procedure. The suspensions were irradiated using a self-developed UV-pen set-up and a commercially available UV chamber, enabling controlled UV exposure over time.

View Article and Find Full Text PDF

Synthesis of Polymer Nanohybrids for Glycerol Sensing, Fluorometric Viscosity Detection, and Metal-Free Electrocatalytic Glycerol Oxidation.

Langmuir

September 2025

Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.

This research provides a constructive approach for developing high-performance polymer nanohybrids toward enhancing optoelectronic properties, fluorogenic viscosity sensing, and metal-free electrocatalytic oxidation of glycerol to value-added organic(s). Herein, reduced graphene oxide (RGO) and mildly oxidized RGO (MRGO) are strategically combined with fluorescent electroactive polymers (FEPs) to develop a promising sustainable metal-free electrocatalytic system suitable for amplifying opto-electrochemical properties, multiplatform sensing capacity, and electrocatalytic efficiency. The optimized polymeric counterpart (FEP2) promotes dual-state emission in the supramolecular network of RGO-/MRGO-incorporated fluorescent electroactive hybrid polymers (RFEHPs/MFEHPs) through physicochemically confined atypical electron-rich -C(═O)NH-/-C(═O)O-/-SOH fluorophores of (hydroxyethyl)methacrylate and 2-acrylamido-2-methylpropane-1-sulfonic acid monomers.

View Article and Find Full Text PDF

Antipyretic analgesics are typical pharmaceutical and personal care products (PPCPs) that are widely used in our daily life because they relieve fever and pain, and have anti-inflammatory and anti-rheumatic properties. These drugs inhibit the synthesis and release of prostaglandins (PGs) in the neurons of the anterior hypothalamus and exert therapeutic effects as a consequence. However, these drugs are relatively commonly misused and abused, often owing to a lack of proper medication guidance.

View Article and Find Full Text PDF

Isoxazoline drugs (ISOs) are a class of five-membered heterocyclic compounds containing N and O atoms. They can inhibit -aminobutyric acid gated chloride channels and are widely used in the treatment of parasitic diseases in poultry. The intake of animal-derived foods by humans is an important way to come into contact with ISOs.

View Article and Find Full Text PDF