Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mutant p53 (mtp53) is an oncogene that drives cancer cell proliferation. Here we report that mtp53 associates with the promoters of numerous nucleotide metabolism genes (NMG). Mtp53 knockdown reduces NMG expression and substantially depletes nucleotide pools, which attenuates GTP-dependent protein activity and cell invasion. Addition of exogenous guanosine or GTP restores the invasiveness of mtp53 knockdown cells, suggesting that mtp53 promotes invasion by increasing GTP. In addition, mtp53 creates a dependency on the nucleoside salvage pathway enzyme deoxycytidine kinase for the maintenance of a proper balance in dNTP pools required for proliferation. These data indicate that mtp53-harbouring cells have acquired a synthetic sick or lethal phenotype relationship with the nucleoside salvage pathway. Finally, elevated expression of NMG correlates with mutant p53 status and poor prognosis in breast cancer patients. Thus, mtp53's control of nucleotide biosynthesis has both a driving and sustaining role in cancer development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467467PMC
http://dx.doi.org/10.1038/ncomms8389DOI Listing

Publication Analysis

Top Keywords

mutant p53
12
nucleotide metabolism
8
mtp53 knockdown
8
nucleoside salvage
8
salvage pathway
8
mtp53
6
regulation nucleotide
4
metabolism mutant
4
p53 contributes
4
contributes gain-of-function
4

Similar Publications

Ovarian and endometrial cancers frequently harbor a mutation in the tumor suppressor gene TP53, which occurs in over 90 % of ovarian cancers and in the most aggressive endometrial cancers. The normal tumor suppressive functions of p53 are disrupted, resulting in unregulated cell growth and therapeutic resistance to standard treatments including chemotherapy and PARP inhibitors. Hence, a novel therapeutic strategy is urgently needed for p53 mutant gynecologic cancers, and we propose that converting mutant p53 to a wild type conformation and restoring its tumor suppressive functions has the potential to greatly improve treatment.

View Article and Find Full Text PDF

Chemogenetic tuning reveals optimal MAPK signaling for cell-fate programming.

Cell Rep

September 2025

Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA. Electronic address:

Cell states evolve through the combined activity of signaling pathways and gene networks. While transcription factors can direct cell fate, these factors rely on a receptive cell state. How signaling levels contribute to the emergence of receptive cell states remains poorly defined.

View Article and Find Full Text PDF

Prognosis of HPV-independent, p53-wild-type vulvar squamous cell carcinoma: A systematic review and meta-analysis.

Gynecol Oncol

September 2025

Pathology Unit, Department of Oncology, ASST Sette Laghi, Varese, Italy; Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy. Electronic address:

Background: Vulvar squamous cell carcinoma (VSCC) is subdivided into TP53-mutant (TP53) and HPV-associated (HPV). In recent years, a third group unrelated to TP53 mutation or HPV-association (TP53/HPV) has emerged. However, its prognosis is unclear.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous disease characterized by a broad spectrum of molecular alterations that influence clinical outcomes. TP53 mutations define one of the most lethal subtypes of acute myeloid leukemia (AML), driving resistance to nearly all available treatment modalities, including venetoclax plus azacitidine (VenAza). Yet, the molecular basis of this resistance, beyond affecting transactivation of BCL-2 family genes, has remained elusive.

View Article and Find Full Text PDF

Pharmacologic interrogation of USP28 cellular function in p53 signaling.

Cell Chem Biol

September 2025

Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Deubiquitinating enzymes (DUBs) are crucial regulators of ubiquitin signaling and protein degradation that remain incompletely understood in part due to the lack of high-quality chemical probes. To address this challenge, we developed CAS-010, a low nanomolar, ubiquitin-competitive inhibitor of USP28 that demonstrates preferential activity against USP28 over other DUBs, while also exhibiting some activity against the closely related USP25. We rationalized our SAR trends and observed selectivity using a crystal structure of USP28 in complex with an inhibitor.

View Article and Find Full Text PDF