Selective recruitment of host factors by HSV-1 replication centers.

Dongwuxue Yanjiu

Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.

Published: May 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herpes simplex virus type 1 (HSV-1) enters productive infection after infecting epithelial cells, where it controls the host nucleus to make viral proteins, starts viral DNA synthesis and assembles infectious virions. In this process, replicating viral genomes are organized into replication centers to facilitate viral growth. HSV-1 is known to use host factors, including host chromatin and host transcription regulators, to transcribe its genes; however, the invading virus also encounters host defense and stress responses to inhibit viral growth. Recently, we found that HSV-1 replication centers recruit host factor CTCF but exclude γH2A.X. Thus, HSV-1 replication centers may selectively recruit cellular factors needed for viral growth, while excluding host factors that are deleterious for viral transcription or replication. Here we report that the viral replication centers selectively excluded modified histone H3, including heterochromatin mark H3K9me3, H3S10P and active chromatin mark H3K4me3, but not unmodified H3. We found a dynamic association between the viral replication centers and host RNA polymerase II. The centers also recruited components of the DNA damage response pathway, including 53BP1, BRCA1 and host antiviral protein SP100. Importantly, we found that ATM kinase was needed for the recruitment of CTCF to the viral centers. These results suggest that the HSV-1 replication centers took advantage of host signaling pathways to actively recruit or exclude host factors to benefit viral growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790689PMC

Publication Analysis

Top Keywords

replication centers
28
host factors
16
hsv-1 replication
16
viral growth
16
host
12
viral
11
centers
9
replication
8
growth hsv-1
8
centers selectively
8

Similar Publications

Objective: To develop a score (Palineo score) to identify the palliative care needs of newborn patients admitted to a Brazilian neonatal intensive care unit of a tertiary maternity hospital that serves as a reference center for high-risk pregnancies, ensuring timely follow-up by a specialist.

Methods: Patients were assessed by three specialists using a questionnaire that included the same clinical elements as those used for the Palineo score but did not assign scores to the criteria. The score was determined by the consensus reached by the specialists.

View Article and Find Full Text PDF

The Sudden Infant Death Syndrome (SIDS) is a major global health problem, with increased risk among socioeconomically disadvantaged populations. We propose SIDS, or a subset, is due to a defect in the brainstem serotonin system mediating cardiorespiratory integration and arousal. This defect impinges on homeostasis during a critical developmental period in infancy, especially in populations experiencing maternal and infantile stress, resulting in sleep-related sudden death.

View Article and Find Full Text PDF

From Biological Mechanisms to Clinical Applications: A Review of Photobiomodulation in Dental Practice.

Photobiomodul Photomed Laser Surg

September 2025

Department of Oral and Maxillofacial Diagnostic Sciences, Dental College and Hospital, Taibah University, Medina, Saudi Arabia.

Photobiomodulation (PBM) therapy involves the use of low-dose, nonionizing light to reduce pain and inflammation, promote wound healing, and enhance tissue regeneration. PBM-based therapy of various dental conditions is associated with improved treatment outcomes. This study aims to critically review the literature to highlight the underlying molecular biological mechanisms and clinical applications of PBM in modern dental practice.

View Article and Find Full Text PDF

The RecBC complex protects single-stranded DNA gaps during lesion bypass.

Proc Natl Acad Sci U S A

September 2025

Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Inserm, Institut Paoli-Calmettes, Aix Marseille Université, Marseille 13009, France.

Following encounter with an unrepaired DNA lesion, replication is halted and can restart downstream of the lesion leading to the formation of a single-stranded DNA (ssDNA) gap. To complete replication, this ssDNA gap is filled in by one of the two lesion tolerance pathways: the error-prone Translesion Synthesis (TLS) or the error-free Homology Directed Gap Repair (HDGR). In the present work, we evidence a role for the RecBC complex distinct from its canonical function in homologous recombination at DNA double strand breaks.

View Article and Find Full Text PDF

Introduction: Evidence-based interventions to reduce tobacco-related morbidity and mortality are not widely or effectively implemented, thereby failing to equitably address disparities in tobacco-related health outcomes. Implementation science (IS) has the potential to advance the impact of tobacco control programs, but its use in this field has not been previously explored. To identify opportunities for expanding tobacco intervention impact, this scoping review investigated the use of IS tools in tobacco control research in the United States.

View Article and Find Full Text PDF